Skip to main content

On Algorithm for Building of Optimal α-Decision Trees

  • Conference paper
Rough Sets and Current Trends in Computing (RSCTC 2010)

Abstract

The paper describes an algorithm that constructs approximate decision trees (α-decision trees), which are optimal relatively to one of the following complexity measures: depth, total path length or number of nodes. The algorithm uses dynamic programming and extends methods described in [4] to constructing approximate decision trees. Adjustable approximation rate allows controlling algorithm complexity. The algorithm is applied to build optimal α-decision trees for two data sets from UCI Machine Learning Repository [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, CA (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

  2. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth & Brooks (1984)

    Google Scholar 

  3. Chegis, I.A., Yablonskii, S.V.: Logical methods of electric circuit control. Trudy MIAN SSSR 51, 270–360 (1958) (in Russian)

    MATH  Google Scholar 

  4. Chikalov, I., Moshkov, M., Zelentsova, M.: On optimization of decision trees. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets IV. LNCS, vol. 3700, pp. 18–36. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Feige, U.: A threshold of ln n for approximating set cover (Preliminary version). In: Proceedings of 28th Annual ACM Symposium on the Theory of Computing, pp. 314–318 (1996)

    Google Scholar 

  6. Moshkov, M.: Greedy algorithm of decision tree construction for real data tables. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 161–168. Springer, Heidelberg (2004)

    Google Scholar 

  7. Pawlak, Z.: Rough Sets – Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  8. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Slowinski, R. (ed.) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Set Theory, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alkhalid, A., Chikalov, I., Moshkov, M. (2010). On Algorithm for Building of Optimal α-Decision Trees. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds) Rough Sets and Current Trends in Computing. RSCTC 2010. Lecture Notes in Computer Science(), vol 6086. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13529-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13529-3_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13528-6

  • Online ISBN: 978-3-642-13529-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics