Advertisement

Abstract

The weighted spanning tree constraint, or wst-constraint, is defined on an edgeweighted graph G and a value K. It states that G admits a spanning tree with weight at most K [3, 4]. It can be applied to network design problems as well as routing problems, in which it serves as a relaxation. In this work, we assume that we can represent the mandatory and possible edges that can belong to a solution to the wst-constraint, e.g., using a subset-bound set variable as in [3].

Keywords

Span Tree Minimum Span Tree Network Design Problem Replacement Cost Tree Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (1990)zbMATHGoogle Scholar
  2. 2.
    Dixon, B., Rauch, M., Tarjan, R.: Verification and sensitivity analysis of minimum spanning trees in linear time. SIAM J. Comput. 21(6), 1184–1192 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Dooms, G., Katriel, I.: The “not-too-heavy spanning tree” constraint. In: Van Hentenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 59–70. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Régin, J.-C.: Simpler and Incremental Consistency Checking and Arc Consistency Filtering Algorithms for the Weighted Spanning Tree Constraint. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 233–247. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Tarjan, R.E.: Applications of path compression on balanced trees. Journal of the ACM 26(4), 690–715 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of the ACM 22, 215–225 (1975)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jean-Charles Régin
    • 1
  • Louis-Martin Rousseau
    • 2
  • Michel Rueher
    • 1
  • Willem-Jan van Hoeve
    • 3
  1. 1.I3SCNRS, University of Nice-Sophia Antipolis 
  2. 2.CIRRELTUniversity of Montreal 
  3. 3.Tepper School of BusinessCarnegie Mellon University 

Personalised recommendations