Skip to main content

Metabolism of Fatty Acids in Adipocytes

  • Chapter
  • First Online:
Novel Insights into Adipose Cell Functions

Part of the book series: Research and Perspectives in Endocrine Interactions ((RPEI))

  • 661 Accesses

Abstract

Adipose tissue is found in mammals in two different forms: white adipose tissue (WAT) and brown adipose tissue (BAT). The primary and best-known function of WAT is to store energy in the form of triglycerides in periods of excess energy intake and to release it in the form of free fatty acids for other organs during fasting, whereas BAT is specialized for heat production. As the body’s major site for energy storage, WAT provides a buffer for energy imbalances when energy intake is not equal to energy output. The pathways by which WAT accumulates and mobilizes fat are dynamic and tightly regulated. With the alarming rise of the epidemic of obesity and the growing concern about obesity-related pathologies in the context of the metabolic syndrome, understanding mechanisms that control adipose tissue fat metabolism is essential to explain obesity’s etiology and its complications and to identify novel therapeutic targets. An overview of the mechanisms involved in the control of lipid uptake, lipid synthesis (de novo lipogenesis and fatty acid esterification), fat mobilization (lipolysis) and fatty acid oxidation will be presented. The discovery of BAT in adult humans and the possibility of converting white into brown fat-like adipocytes open up new opportunities for the development of treatments or preventive drugs for obesity and its metabolic and cardiovascular complications. New generation of lipolysis inhibitors may prove promising in the treatment of the metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarsland A, Chinkes D, Wolfe RR (1997) Hepatic and whole-body fat synthesis in humans during carbohydrate overfeeding. Am J Clin Nutr 65:1774–1782

    PubMed  CAS  Google Scholar 

  • Abumrad N, Coburn C, Ibrahimi A (1999) Membrane proteins implicated in long-chain fatty acid uptake by mammalian cells: CD36, FATP and FABPm. Biochim Biophys Acta 1441:4–13

    Article  PubMed  CAS  Google Scholar 

  • Arner P (1997). Regional adipocity in man. J Endocrinol 155:191–192

    Article  PubMed  CAS  Google Scholar 

  • Au-Yong IT, Thorn N, Ganatra R, Perkins AC, Symonds ME (2009) Brown adipose tissue and seasonal variation in humans. Diabetes 58:2583–2587

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay G, Sajan MP, Kanoh Y, Standaert ML, Quon MJ, Reed BC, Dikic I, Farese RV (2001) Glucose activates protein kinase C-zeta /lambda through proline-rich tyrosine kinase-2, extracellular signal-regulated kinase, and phospholipase D: a novel mechanism for activating glucose transporter translocation. J Biol Chem 276 35537–35545

    Article  PubMed  CAS  Google Scholar 

  • Barrows BR, Timlin MT, Parks EJ (2005) Spillover of dietary fatty acids and use of serum nonesterified fatty acids for the synthesis of VLDL-triacylglycerol under two different feeding regimens. Diabetes 54:2668–2673

    Article  PubMed  CAS  Google Scholar 

  • Beale EG, Hammer RE, Antoine B, Forest C (2002) Glyceroneogenesis comes of age. Faseb J 16, 1695–1696

    Article  PubMed  CAS  Google Scholar 

  • Beigneux AP, Davies BS, Gin P, Weinstein MM, Farber E, Qiao X, Peale F, Bunting S, Walzem RL, Wong JS, Blaner WS, Ding ZM, Melford K, Wongsiriroj N, Shu X, de Sauvage F, Ryan RO, Fong LG, Bensadoun A, Young SG (2007) Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab 5:279–291

    Article  PubMed  CAS  Google Scholar 

  • Bell RM, Coleman RA (1980) Enzymes of glycerolipid synthesis in eukaryotes. Annu Rev Biochem 49:459–487

    Article  PubMed  CAS  Google Scholar 

  • Bezaire V, Langin D (2009) Regulation of adipose tissue lipolysis revisited. Proc Nutr Soc 68:350–360

    Article  PubMed  CAS  Google Scholar 

  • Bogacka I, Xie H, Bray GA, Smith SR (2005). Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes 54, 1392–1399

    Article  PubMed  CAS  Google Scholar 

  • Bonen A, Luiken JJ, Liu S, Dyck DJ, Kiens B, Kristiansen S, Turcotte LP, Van Der Vusse GJ, Glatz JF (1998) Palmitate transport and fatty acid transporters in red and white muscles. Am J Physiol 275:E471–478

    PubMed  CAS  Google Scholar 

  • Botion LM, Green A (1999) Long-term regulation of lipolysis and hormone-sensitive lipase by insulin and glucose. Diabetes 48:1691–1697

    Article  PubMed  CAS  Google Scholar 

  • Braun JE, Severson DL (1992a) Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochem J 287 ( Pt 2): 337–347

    PubMed  CAS  Google Scholar 

  • Braun JE, Severson DL (1992b) Tissue-specific regulation of lipoprotein lipase. Cmaj 147:1192

    PubMed  CAS  Google Scholar 

  • Brown PJ, Stuart LW, Hurley KP, Lewis MC, Winegar DA, Wilson JG, Wilkison WO, Ittoop OR, Willson TM (2001). Identification of a subtype selective human PPARalpha agonist through parallel-array synthesis. Bioorg Med Chem Lett 11:1225–1227

    Article  PubMed  CAS  Google Scholar 

  • Campbell PJ, Carlson MG, Hill JO, Nurjhan N (1992) Regulation of free fatty acid metabolism by insulin in humans: role of lipolysis and reesterification. Am J Physiol 263:E1063–1069

    PubMed  CAS  Google Scholar 

  • Camps L, Reina M, Llobera M, Vilaro S, Olivecrona T (1990) Lipoprotein lipase: cellular origin and functional distribution. Am J Physiol 258:C673–681

    PubMed  CAS  Google Scholar 

  • Cases S, Smith SJ, Zheng YW, Myers HM, Lear SR, Sande E, Novak S, Collins C, Welch CB, Lusis AJ, Erickson SK, Farese RV Jr (1998) Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci USA 95:13018–13023

    Article  PubMed  CAS  Google Scholar 

  • Cases S, Stone SJ, Zhou P, Yen E, Tow B, Lardizabal KD, Voelker T, Farese RV, Jr. (2001) Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J Biol Chem 276:38870–38876

    Article  PubMed  CAS  Google Scholar 

  • Coe NR, Smith AJ, Frohnert BI, Watkins PA, Bernlohr DA (1999) The fatty acid transport protein (FATP1) is a very long chain acyl-CoA synthetase. J Biol Chem 274:36300–36304

    Article  PubMed  CAS  Google Scholar 

  • Coleman RA, Lewin TM, Muoio DM (2000) Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Annu Rev Nutr 20, 77–103

    Article  PubMed  CAS  Google Scholar 

  • Coppack SW, Persson M, Judd RL, Miles JM (1999) Glycerol and nonesterified fatty acid metabolism in human muscle and adipose tissue in vivo. Am J Physiol 276:E233–240

    PubMed  CAS  Google Scholar 

  • Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR (2009) Identification and importance of brown adipose tissue in adult humans. New Engl J Med 360:1509–1517

    Article  PubMed  CAS  Google Scholar 

  • Degrace P, Moindrot B, Mohamed I, Gresti J, Du ZY, Chardigny JM, Sebedio JL, Clouet P (2006). Upregulation of liver VLDL receptor and FAT/CD36 expression in LDLR-/- apoB100/100 mice fed trans-10,cis-12 conjugated linoleic acid. J Lipid Res 47:2647–2655

    Article  PubMed  CAS  Google Scholar 

  • Descamps O, Bilheimer D, Herz J (1993) Insulin stimulates receptor-mediated uptake of apoE-enriched lipoproteins and activated alpha 2-macroglobulin in adipocytes. J Biol Chem 268:974–981

    PubMed  CAS  Google Scholar 

  • Diraison F, Dusserre E, Vidal H, Sothier M, Beylot M (2002) Increased hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue in human obesity. Am J Physiol Endocrinol Metab 282:E46–51

    PubMed  CAS  Google Scholar 

  • DiRusso CC, Black PN, Weimar JD (1999) Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria. Prog Lipid Res 38:129–197

    Article  PubMed  CAS  Google Scholar 

  • Doolittle MH, Ben-Zeev O, Elovson J, Martin D, Kirchgessner TG (1990) The response of lipoprotein lipase to feeding and fasting. Evidence for posttranslational regulation. J Biol Chem 265:4570–4577

    PubMed  CAS  Google Scholar 

  • Ebdrup S, Sorensen LG, Olsen OH, Jacobsen P (2004) Synthesis and structure-activity relationship for a novel class of potent and selective carbamoyl-triazole based inhibitors of hormone sensitive lipase. J Med Chem 47, 400–410

    Article  PubMed  CAS  Google Scholar 

  • Fielding BA, Frayn KN (1998) Lipoprotein lipase and the disposition of dietary fatty acids. Br J Nutr 80:495–502

    PubMed  CAS  Google Scholar 

  • Fielding CJ (1992) Lipoprotein receptors, plasma cholesterol metabolism, and the regulation of cellular free cholesterol concentration. Faseb J 6:3162–3168

    PubMed  CAS  Google Scholar 

  • Forcheron F, Cachefo A, Thevenon S, Pinteur C, Beylot M (2002) Mechanisms of the triglyceride- and cholesterol-lowering effect of fenofibrate in hyperlipidemic type 2 diabetic patients. Diabetes 51:3486–3491

    Article  PubMed  CAS  Google Scholar 

  • Frayn KN, Kingman SM (1995) Dietary sugars and lipid metabolism in humans. Am J Clin Nutr 62:250S-261S; discussion 261S–263S

    PubMed  CAS  Google Scholar 

  • Frayn KN, Shadid S, Hamlani R, Humphreys SM, Clark ML, Fielding BA, Boland O, Coppack SW (1994) Regulation of fatty acid movement in human adipose tissue in the postabsorptive-to-postprandial transition. Am J Physiol 266:E308–317

    PubMed  CAS  Google Scholar 

  • Fried SK, Russell CD, Grauso NL, Brolin RE (1993) Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues of obese women and men. J Clin Invest 92:2191–2198

    Article  PubMed  CAS  Google Scholar 

  • Gauthier MS, Miyoshi H, Souza SC, Cacicedo JM, Saha AK, Greenberg AS, Ruderman NB (2008) AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte: potential mechanism and physiological relevance. J Biol Chem 283:16514–16524

    Article  PubMed  CAS  Google Scholar 

  • Ghorbani M, Claus TH, Himms-Hagen J (1997) Hypertrophy of brown adipocytes in brown and white adipose tissues and reversal of diet-induced obesity in rats treated with a beta3-adrenoceptor agonist. Biochem Pharmacol 54:121–131

    Article  PubMed  CAS  Google Scholar 

  • Goldberg IJ (1996) Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res 37:693–707

    PubMed  CAS  Google Scholar 

  • Goudriaan JR, Tacken PJ, Dahlmans VE, Gijbels MJ, van Dijk KW, Havekes LM, Jong MC (2001) Protection from obesity in mice lacking the VLDL receptor. Arterioscler Thromb Vasc Biol 21:1488–1493

    Article  PubMed  CAS  Google Scholar 

  • Granneman JG, Moore HP, Granneman RL, Greenberg AS, Obin MS, Zhu Z (2007) Analysis of lipolytic protein trafficking and interactions in adipocytes. J Biol Chem 282:5726–5735

    Article  PubMed  CAS  Google Scholar 

  • Granneman JG, Moore HP, Krishnamoorthy R, Rathod M (2009) Perilipin controls lipolysis by regulating the interactions of ab-hydrolase containing 5 (Abhd5) and adipose trigylceride lipase (ATGL). J Biol Chem 284:34538–34544

    Article  PubMed  CAS  Google Scholar 

  • Guan HP, Li Y, Jensen MV, Newgard CB, Steppan CM, Lazar MA (2002) A futile metabolic cycle activated in adipocytes by antidiabetic agents. Nat Med 8, 1122–1128

    Article  PubMed  CAS  Google Scholar 

  • Guerra C, Koza RA, Yamashita H, Walsh K, Kozak LP (1998). Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J Clin Invest 102, 412–420

    Article  PubMed  CAS  Google Scholar 

  • Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J, Heldmaier G, Maier R, Theussl C, Eder S, Kratky D, Wagner EF, Klingenspor M, Hoefler G, Zechner R (2006). Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312, 734–737

    Article  PubMed  CAS  Google Scholar 

  • Haemmerle G, Zimmermann R, Strauss JG, Kratky D, Riederer M, Knipping G, Zechner R (2002) Hormone-sensitive lipase deficiency in mice changes the plasma lipid profile by affecting the tissue-specific expression pattern of lipoprotein lipase in adipose tissue and muscle. J Biol Chem 277:12946–12952

    Article  PubMed  CAS  Google Scholar 

  • Hamilton JA, Johnson RA, Corkey B, Kamp F (2001) Fatty acid transport: the diffusion mechanism in model and biological membranes. J Mol Neurosci 16:99-108; discussion 151–107

    Article  PubMed  CAS  Google Scholar 

  • Himms-Hagen J (1990) Brown adipose tissue thermogenesis: interdisciplinary studies. Faseb J 4:2890–2898

    PubMed  CAS  Google Scholar 

  • Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S (2000) Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol 279:C670–681

    PubMed  CAS  Google Scholar 

  • Jensen MD, Caruso M, Heiling V, Miles JM (1989) Insulin regulation of lipolysis in nondiabetic and IDDM subjects. Diabetes 38:1595–1601

    Article  PubMed  CAS  Google Scholar 

  • Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP, Spiegelman BM (2009) Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 460:1154–1158

    Article  PubMed  CAS  Google Scholar 

  • Kamp F, Hamilton JA (2006) How fatty acids of different chain length enter and leave cells by free diffusion. Prostaglandins Leukot Essent Fatty Acids 75:149–159

    Article  PubMed  CAS  Google Scholar 

  • Klein S, Weber JM, Coyle EF, Wolfe RR (1996) Effect of endurance training on glycerol kinetics during strenuous exercise in humans. Metabolism 45:357–361

    Article  PubMed  CAS  Google Scholar 

  • Klemm S, Zimmermann S, Peschel C, Mak TW, Ruland J (2007) Bcl10 and Malt1 control lysophosphatidic acid-induced NF-kappaB activation and cytokine production. Proc Natl Acad Sci USA 104:134–138

    Article  PubMed  CAS  Google Scholar 

  • Kraemer FB, Shen WJ (2002) Hormone-sensitive lipase: control of intracellular tri-(di-)acylglycerol and cholesteryl ester hydrolysis. J Lipid Res 43:1585–1594

    Article  PubMed  CAS  Google Scholar 

  • Lafontan M, Langin D (2009) Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res 48:275–297

    Article  PubMed  CAS  Google Scholar 

  • Lake AC, Sun Y, Li JL, Kim JE, Johnson JW, Li D, Revett T, Shih HH, Liu W, Paulsen JE, Gimeno RE (2005) Expression, regulation, and triglyceride hydrolase activity of Adiponutrin family members. J Lipid Res 46:2477–2487

    Article  PubMed  CAS  Google Scholar 

  • Langin D (2009) Recruitment of brown fat and conversion of white into brown adipocytes: Strategies to fight the metabolic complications of obesity? Biochim Biophys Acta doi:10.1016/j.bbalip.2009.09.008

    Google Scholar 

  • Langin D, Dicker A, Tavernier G, Hoffstedt J, Mairal A, Ryden M, Arner E, Sicard A, Jenkins CM, Viguerie N, van Harmelen V, Gross RW, Holm C, Arner P (2005) Adipocyte lipases and defect of lipolysis in human obesity. Diabetes 54:3190–3197

    Article  PubMed  CAS  Google Scholar 

  • Larrouy D, Vidal H, Andreelli F, Laville M, Langin D (1999) Cloning and mRNA tissue distribution of human PPARgamma coactivator-1. Int J Obes Relat Metab Disord 23:1327–1332

    Article  PubMed  CAS  Google Scholar 

  • Lass A, Zimmermann R, Haemmerle G, Riederer M, Schoiswohl G, Schweiger M, Kienesberger P, Strauss JG, Gorkiewicz G, Zechner R (2006) Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab 3:309–319

    Article  PubMed  CAS  Google Scholar 

  • Leung DW (2001) The structure and functions of human lysophosphatidic acid acyltransferases. Front Biosci 6:D944–953

    Article  PubMed  CAS  Google Scholar 

  • Limatola C, Schaap D, Moolenaar WH, van Blitterswijk WJ (1994) Phosphatidic acid activation of protein kinase C-zeta overexpressed in COS cells: comparison with other protein kinase C isotypes and other acidic lipids. Biochem J 304 ( Pt 3): 1001–1008

    PubMed  CAS  Google Scholar 

  • Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jager S, Vianna CR, Reznick RM, Cui L, Manieri M, Donovan MX, Wu Z, Cooper MP, Fan MC, Rohas LM, Zavacki AM, Cinti S, Shulman GI, Lowell BB, Krainc D, Spiegelman BM (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119:121–135

    Article  PubMed  CAS  Google Scholar 

  • Loncar D (1991) Convertible adipose tissue in mice. Cell Tissue Res 266:149–161

    Article  PubMed  CAS  Google Scholar 

  • Londos C, Brasaemle DL, Gruia-Gray J, Servetnick DA, Schultz CJ, Levin DM, Kimmel AR (1995) Perilipin: unique proteins associated with intracellular neutral lipid droplets in adipocytes and steroidogenic cells. Biochem Soc Trans 23:611–615

    PubMed  CAS  Google Scholar 

  • Lonnroth P, Smith U (1986) The antilipolytic effect of insulin in human adipocytes requires activation of the phosphodiesterase. Biochem Biophys Res Commun 141:1157–1161

    Article  PubMed  CAS  Google Scholar 

  • Mandard S, Muller M, Kersten S (2004) Peroxisome proliferator-activated receptor alpha target genes. Cell Mol Life Sci 61:393–416

    Article  PubMed  CAS  Google Scholar 

  • Marcinkiewicz A, Gauthier D, Garcia A, Brasaemle DL (2006) The phosphorylation of serine 492 of perilipin a directs lipid droplet fragmentation and dispersion. J Biol Chem 281:11901–11909

    Article  PubMed  CAS  Google Scholar 

  • Mazzucotelli A, Viguerie N, Tiraby C, Annicotte JS, Mairal A, Klimcakova E, Lepin E, Delmar P, Dejean S, Tavernier G, Lefort C, Hidalgo J, Pineau T, Fajas L, Clément K, Langin D (2007) The transcriptional coactivator peroxisome proliferator activated receptor (PPAR)gamma coactivator-1 alpha and the nuclear receptor PPAR alpha control the expression of glycerol kinase and metabolism genes independently of PPAR gamma activation in human white adipocytes. Diabetes 56:2467–2475

    Article  PubMed  CAS  Google Scholar 

  • Minehira K, Vega N, Vidal H, Acheson K, Tappy L (2004) Effect of carbohydrate overfeeding on whole body macronutrient metabolism and expression of lipogenic enzymes in adipose tissue of lean and overweight humans. Int J Obes Relat Metab Disord 28:1291–1298

    Article  PubMed  CAS  Google Scholar 

  • Mittendorfer B, Sidossis LS (2001) Mechanism for the increase in plasma triacylglycerol concentrations after consumption of short-term, high-carbohydrate diets. Am J Clin Nutr 73:892–899

    PubMed  CAS  Google Scholar 

  • Miyoshi H, Perfield JW, 2nd, Obin MS, Greenberg AS (2008) Adipose triglyceride lipase regulates basal lipolysis and lipid droplet size in adipocytes. J Cell Biochem 105:1430–1436

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi H, Souza SC, Zhang HH, Strissel KJ, Christoffolete MA, Kovsan J, Rudich A, Kraemer FB, Bianco AC, Obin MS, Greenberg AS (2006) Perilipin promotes hormone-sensitive lipase-mediated adipocyte lipolysis via phosphorylation-dependent and -independent mechanisms. J Biol Chem 281:15837–15844

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293:E444–452

    Article  PubMed  CAS  Google Scholar 

  • Newsholme EA, Crabtree B (1976) Substrate cycles in metabolic regulation and in heat generation. Biochem Soc Symp 41:61–109 ref sur pubmed

    PubMed  CAS  Google Scholar 

  • Niemeier A, Gafvels M, Heeren J, Meyer N, Angelin B, Beisiegel U (1996) VLDL receptor mediates the uptake of human chylomicron remnants in vitro. J Lipid Res 37:1733–1742

    PubMed  CAS  Google Scholar 

  • Oberkofler H, Dallinger G, Liu YM, Hell E, Krempler F, Patsch W (1997) Uncoupling protein gene: quantification of expression levels in adipose tissues of obese and non-obese humans. J Lipid Res 38:2125–2133

    PubMed  CAS  Google Scholar 

  • O’Brien RM, Granner DK (1995) Why there is an IRS. J Clin Invest 96:2546

    Article  PubMed  Google Scholar 

  • Olivecrona T, Bengtsson-Olivecrona G, Ostergaard P, Liu G, Chevreuil O, and Hultin M (1993) New aspects on heparin and lipoprotein metabolism. Haemostasis 23 Suppl 1:150–160

    Google Scholar 

  • Ong JM, Kern PA (1989) Effect of feeding and obesity on lipoprotein lipase activity, immunoreactive protein, and messenger RNA levels in human adipose tissue. J Clin Invest 84:305–311

    Article  PubMed  CAS  Google Scholar 

  • Pownall HJ, Hamilton JA (2003) Energy translocation across cell membranes and membrane models. Acta Physiol Scand 178:357–365

    Article  PubMed  CAS  Google Scholar 

  • Prentki M, Madiraju SR (2008) Glycerolipid metabolism and signaling in health and disease. Endocr Rev 29:647–676

    Article  PubMed  CAS  Google Scholar 

  • Przybytkowski E, Joly E, Nolan CJ, Hardy S, Francoeur AM, Langelier Y, Prentki M (2007) Upregulation of cellular triacylglycerol - free fatty acid cycling by oleate is associated with long-term serum-free survival of human breast cancer cells. Biochem Cell Biol 85:301–310

    Article  PubMed  CAS  Google Scholar 

  • Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839

    Article  PubMed  CAS  Google Scholar 

  • Reshef L, Olswang Y, Cassuto H, Blum B, Croniger CM, Kalhan SC, Tilghman SM, Hanson RW (2003) Glyceroneogenesis and the triglyceride/fatty acid cycle. J Biol Chem 278:30413–30416

    Article  PubMed  CAS  Google Scholar 

  • Ribet C, Montastier E, Valle C, Bezaire V, Mazzucotelli A, Mairal A, Viguerie N, Langin D (2010) Peroxisome Proliferator-activated receptor-ڱ control of lipid and glucose metabolism in human white ddipocytes. Endocrinology 151:123–133 (faut changer l’année dans le texte aussi je suppose? (demandé par Astrid?)

    Article  PubMed  CAS  Google Scholar 

  • Ricart-Jane D, Cejudo-Martin P, Peinado-Onsurbe J, Lopez-Tejero MD, Llobera M (2005) Changes in lipoprotein lipase modulate tissue energy supply during stress. J Appl Physiol 99:1343–1351

    Article  PubMed  CAS  Google Scholar 

  • Ricquier D, Bouillaud F (2000) Mitochondrial uncoupling proteins: from mitochondria to the regulation of energy balance. J Physiol 529 Pt 1:3–10

    Article  Google Scholar 

  • Roberts CK, Barnard RJ, Liang KH, Vaziri ND (2002) Effect of diet on adipose tissue and skeletal muscle VLDL receptor and LPL: implications for obesity and hyperlipidemia. Atherosclerosis 161:133–141

    Article  PubMed  CAS  Google Scholar 

  • Rosen ED, Spiegelman BM (2000) Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 16:145–171

    Article  PubMed  CAS  Google Scholar 

  • Sakai J, Hoshino A, Takahashi S, Miura Y, Ishii H, Suzuki H, Kawarabayasi Y, Yamamoto T (1994) Structure, chromosome location, and expression of the human very low density lipoprotein receptor gene. J Biol Chem 269:2173–2182

    PubMed  CAS  Google Scholar 

  • Schaffer JE (2002) Fatty acid transport: the roads taken. Am J Physiol Endocrinol Metab 282:E239–246

    PubMed  CAS  Google Scholar 

  • Schaffer JE, Lodish HF (1994) Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell 79:427–436

    Article  PubMed  CAS  Google Scholar 

  • Schiffelers SL, Brouwer EM, Saris WH, van Baak MA (1998) Inhibition of lipolysis reduces beta1-adrenoceptor-mediated thermogenesis in man. Metabolism 47:1462–1467

    Article  PubMed  CAS  Google Scholar 

  • Scow RO, Blanchette-Mackie EJ (1985) Why fatty acids flow in cell membranes. Prog Lipid Res 24:197–241

    Article  PubMed  CAS  Google Scholar 

  • Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454:961–967

    Article  PubMed  CAS  Google Scholar 

  • Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M, Tavernier G, Langin D, Spiegelman BM (2007) Transcriptional control of brown fat determination by PRDM16. Cell Metab 6:38–54

    Article  PubMed  CAS  Google Scholar 

  • Shrago E, Spennetta T, Gordon E (1969) Fatty acid synthesis in human adipose tissue. J Biol Chem 244:2761–2766

    PubMed  CAS  Google Scholar 

  • Stahl A (2004) A current review of fatty acid transport proteins (SLC27). Pflugers Arch 447:722–727

    Article  PubMed  CAS  Google Scholar 

  • Stahl A, Evans JG, Pattel S, Hirsch D, Lodish HF (2002) Insulin causes fatty acid transport protein translocation and enhanced fatty acid uptake in adipocytes. Dev Cell 2:477–488

    Article  PubMed  CAS  Google Scholar 

  • Sul HS, Wang D (1998) Nutritional and hormonal regulation of enzymes in fat synthesis: studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription. Annu Rev Nutr 18:331–351

    Article  PubMed  CAS  Google Scholar 

  • Swierczynski J, Goyke E, Wach L, Pankiewicz A, Kochan Z, Adamonis W, Sledzinski Z, Aleksandrowicz Z (2000) Comparative study of the lipogenic potential of human and rat adipose tissue. Metabolism 49:594–599

    Article  PubMed  CAS  Google Scholar 

  • Tacken PJ, Hofker MH, Havekes LM, van Dijk KW (2001) Living up to a name: the role of the VLDL receptor in lipid metabolism. Curr Opin Lipidol 12:275–279

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Kawarabayasi Y, Nakai T, Sakai J, Yamamoto T (1992) Rabbit very low density lipoprotein receptor: a low density lipoprotein receptor-like protein with distinct ligand specificity. Proc Natl Acad Sci USA 89:9252–9256

    Article  PubMed  CAS  Google Scholar 

  • Tan GD, Debard C, Tiraby C, Humphreys SM, Frayn KN, Langin D, Vidal H, Karpe F (2003) A “futile cycle” induced by thiazolidinediones in human adipose tissue? Nature Med 9:811–812; author reply 812

    Article  PubMed  CAS  Google Scholar 

  • Thorner JW, Paulus H (1973) Catalytic and allosteric properties of glycerol kinase from Escherichia coli. J Biol Chem 248:3922–3932

    PubMed  CAS  Google Scholar 

  • Tiraby C, Langin D (2003) Conversion from white to brown adipocytes: a strategy for the control of fat mass? Trends Endocrinol Metab 14:439–441

    Article  PubMed  CAS  Google Scholar 

  • Tiraby C, Tavernier G, Lefort C, Larrouy D, Bouillaud F, Ricquier D, Langin D (2003) Acquirement of brown fat cell features by human white adipocytes. J Biol Chem 278:33370–33376

    Article  PubMed  CAS  Google Scholar 

  • Tunaru S, Kero J, Schaub A, Wufka C, Blaukat A, Pfeffer K, Offermanns S (2003) PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nature Med 9:352–355

    Article  PubMed  CAS  Google Scholar 

  • Uldry M, Yang W, St-Pierre J, Lin J, Seale P, Spiegelman BM (2006) Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab 3:333–341

    Article  PubMed  CAS  Google Scholar 

  • van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. New Engl J Med 360:1500–1508

    Article  PubMed  CAS  Google Scholar 

  • Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P (2009) Functional brown adipose tissue in healthy adults. New Engl J Med 360:1518–1525

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Jones PJ (2004) Dietary conjugated linoleic acid and body composition. Am J Clin Nutr 79:1153S–1158S

    PubMed  CAS  Google Scholar 

  • Wise A, Foord SM, Fraser NJ, Barnes AA, Elshourbagy N, Eilert M, Ignar DM, Murdock PR, Steplewski K, Green A, Brown AJ, Dowell SJ, Szekeres PG, Hassall DG, Marshall FH, Wilson S, Pike NB (2003) Molecular identification of high and low affinity receptors for nicotinic acid. J Biol Chem 278:9869–9874

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Ortegon AM, Tsang B, Doege H, Feingold KR, Stahl A (2006). FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity. Mol Cell Biol 26:3455–3467

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999a) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Rosen ED, Brun R, Hauser S, Adelmant G, Troy AE, McKeon C, Darlington GJ, Spiegelman BM (1999b) Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell 3:151–158

    Article  PubMed  CAS  Google Scholar 

  • Wyne KL, Pathak K, Seabra MC, Hobbs HH (1996) Expression of the VLDL receptor in endothelial cells. Arterioscler Thromb Vasc Biol 16:407–415

    Article  PubMed  CAS  Google Scholar 

  • Yagyu H, Lutz EP, Kako Y, Marks S, Hu Y, Choi SY, Bensadoun A, Goldberg IJ (2002) Very low density lipoprotein (VLDL) receptor-deficient mice have reduced lipoprotein lipase activity. Possible causes of hypertriglyceridemia and reduced body mass with VLDL receptor deficiency. J Biol Chem 277:10037–10043

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Omatsu N, Matsushita S, Osumi T (2004) CGI-58 interacts with perilipin and is localized to lipid droplets. Possible involvement of CGI-58 mislocalization in Chanarin-Dorfman syndrome. J Biol Chem 279:30490–30497

    Article  PubMed  CAS  Google Scholar 

  • Zakim D (1996) Fatty acids enter cells by simple diffusion. Proc Soc Exp Biol Med 212:5–14

    PubMed  CAS  Google Scholar 

  • Zhang Y, Schmidt RJ, Foxworthy P, Emkey R, Oler JK, Large TH, Wang H, Su EW, Mosior MK, Eacho PI, Cao G (2005) Niacin mediates lipolysis in adipose tissue through its G-protein coupled receptor HM74A. Biochem Biophys Res Commun 334:729–732

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann R, Haemmerle G, Wagner EM, Strauss JG, Kratky D, Zechner R (2003) Decreased fatty acid esterification compensates for the reduced lipolytic activity in hormone-sensitive lipase-deficient white adipose tissue. J Lipid Res 44:2089–2099

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386

    Article  PubMed  CAS  Google Scholar 

  • Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B, Nedergaard J, Cinti S (2009) The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. Faseb J 23:3113–3120

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Langin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dinel, A.L., Kolditz, C., Langin, D. (2010). Metabolism of Fatty Acids in Adipocytes. In: Christen, Y., Clément, K., Spiegelman, B. (eds) Novel Insights into Adipose Cell Functions. Research and Perspectives in Endocrine Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13517-0_3

Download citation

Publish with us

Policies and ethics