Phylogeny- and Parsimony-Based Haplotype Inference with Constraints

  • Michael Elberfeld
  • Till Tantau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6129)


Haplotyping, also known as haplotype phase prediction, is the problem of predicting likely haplotypes based on genotype data. One fast computational haplotyping method is based on an evolutionary model where a perfect phylogenetic tree is sought that explains the observed data. In their cpm 2009 paper, Fellows et al. studied an extension of this approach that incorporates prior knowledge in the form of a set of candidate haplotypes from which the right haplotypes must be chosen. While this approach may help to increase the accuracy of haplotyping methods, it was conjectured that the resulting formal problem constrained perfect phylogeny haplotyping might be NP-complete. In the present paper we present a polynomial-time algorithm for it. Our algorithmic ideas also yield new fixed-parameter algorithms for related haplotyping problems based on the maximum parsimony assumption.


Maximum Parsimony Recursive Call Distinct Haplotype Phase Constraint Haplotype Inference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bafna, V., Gusfield, D., Hannenhalli, S., Yooseph, S.: A note on efficient computation of haplotypes via perfect phylogeny. J. Comput. Biol. 11(5), 858–866 (2004)CrossRefGoogle Scholar
  2. 2.
    Bafna, V., Gusfield, D., Lancia, G., Yooseph, S.: Haplotyping as perfect phylogeny: A direct approach. J. of Comput. Biol. 10(3–4), 323–340 (2003)CrossRefGoogle Scholar
  3. 3.
    Bonizzoni, P.: A linear-time algorithm for the perfect phylogeny haplotype problem. Algorithmica 48(3), 267–285 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brown, D.G., Harrower, I.M.: Integer programming approaches to haplotype inference by pure parsimony. IEEE/ACM T. on Comput. Biol. and Bioinf. 3(2), 141–154 (2006)CrossRefGoogle Scholar
  5. 5.
    Ding, Z., Filkov, V., Gusfield, D.: A linear-time algorithm for the perfect phylogeny haplotyping (PPH) problem. J. Comput. Biol. 13(2), 522–553 (2006)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)Google Scholar
  7. 7.
    Elberfeld, M.: Perfect phylogeny haplotyping is complete for logspace. Computing Research Repository (CoRR), abs/0905.0602 (2009)Google Scholar
  8. 8.
    Elberfeld, M., Tantau, T.: Computational complexity of perfect-phylogeny-related haplotyping problems. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 299–310. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Elberfeld, M., Tantau, T.: Phylogeny- and parsimony-based haplotype inference with constraints. Technical Report SIIM-TR-A-10-01, Universität zu Lübeck (2010)Google Scholar
  10. 10.
    Eskin, E., Halperin, E., Karp, R.M.: Efficient reconstruction of haplotype structure via perfect phylogeny. J. Bioinf. and Comput. Biol. 1(1), 1–20 (2003)CrossRefGoogle Scholar
  11. 11.
    Excoffier, L., Slatkin, M.: Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol. Biol. and Evol. 12(5), 921–927 (1995)Google Scholar
  12. 12.
    Fellows, M.R., Hartman, T., Hermelin, D., Landau, G.M., Rosamond, F.A., Rozenberg, L.: Haplotype inference constrained by plausible haplotype data. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 339–352. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Gusfield, D.: Haplotyping as perfect phylogeny: Conceptual framework and efficient solutions. In: Proc. of RECOMB 2002, pp. 166–175. ACM Press, New York (2002)CrossRefGoogle Scholar
  14. 14.
    Gusfield, D.: Haplotype inference by pure parsimony. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Huang, Y.-T., Chao, K.-M., Chen, T.: An approximation algorithm for haplotype inference by maximum parsimony. J. Comput. Biol. 12(10), 1261–1274 (2005)CrossRefGoogle Scholar
  16. 16.
    Jager, G., Climer, S., Zhang, W.: Complete parsimony haplotype inference problem and algorithms. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 337–348. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Lancia, G., Pinotti, M.C., Rizzi, R.: Haplotyping populations by pure parsimony: Complexity of exact and approximation algorithms. INFORMS J. on Comput. 16(4), 348–359 (2004)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Liu, Y., Zhang, C.-Q.: A linear solution for haplotype perfect phylogeny problem. In: Proc. Int. Conf. Adv. in Bioinf. and Appl., pp. 173–184. World Scientific, Singapore (2005)Google Scholar
  19. 19.
    Satya, R.V., Mukherjee, A.: An optimal algorithm for perfect phylogeny haplotyping. J. Comput. Biol. 13(4), 897–928 (2006)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Sharan, R., Halldórsson, B.V., Istrail, S.: Islands of tractability for parsimony haplotyping. IEEE/ACM T. Comput. Biol. and Bioinf. 3(3), 303–311 (2006)CrossRefGoogle Scholar
  21. 21.
    van Iersel, L., Keijsper, J., Kelk, S., Stougie, L.: Shorelines of islands of tractability: Algorithms for parsimony and minimum perfect phylogeny haplotyping problems. IEEE/ACM T. Comput. Biol. and Bioinf. 5(2), 301–312 (2008)CrossRefGoogle Scholar
  22. 22.
    Wang, L., Xu, Y.: Haplotype inference by maximum parsimony. Bioinformatics 19(14), 1773–1780 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michael Elberfeld
    • 1
  • Till Tantau
    • 1
  1. 1.Institut für Theoretische InformatikUniversität zu LübeckLübeckGermany

Personalised recommendations