Advertisement

Breakpoint Distance and PQ-Trees

  • Haitao Jiang
  • Cedric Chauve
  • Binhai Zhu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6129)

Abstract

The PQ-tree is a fundamental data structure that can encode large sets of permutations. It has recently been used in comparative genomics to model ancestral genomes with some uncertainty: given a phylogeny for some species, extant genomes are represented by permutations on the leaves of the tree, and each internal node in the phylogenetic tree represents an extinct ancestral genome, represented by a PQ-tree. An open problem related to this approach is then to quantify the evolution between genomes represented by PQ-trees. In this paper we present results for two problems of PQ-tree comparison motivated by this application. First, we show that the problem of comparing two PQ-trees by computing the minimum breakpoint distance among all pairs of permutations generated respectively by the two considered PQ-trees is NP-complete for unsigned permutations. Next, we consider a generalization of the classical Breakpoint Median problem, where an ancestral genome is represented by a PQ-tree and p permutations are given, with p ≥ 1, and we want to compute a permutation generated by the PQ-tree that minimizes the sum of the breakpoint distances to the p permutations. We show that this problem is Fixed-Parameter Tractable with respect to the breakpoint distance value. This last result applies both on signed and unsigned permutations, and to uni-chromosomal and multi-chromosomal permutations.

Keywords

Internal Node Interval Graph Ancestral Genome Super Node Blue Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alizadeh, F., Karp, R., Weisser, D., Zweig, G.: Physical mapping of chromosomes using unique probes. J. Comp. Biol. 2, 159–184 (1995)CrossRefGoogle Scholar
  2. 2.
    Bergeron, A., Blanchette, M., Chateau, A., Chauve, C.: Reconstructing ancestral gene orders using conserved intervals. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 14–25. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Blin, G., Blais, E., Guillon, P., Blanchette, M., ElMabrouk, N.: Inferring Gene Orders from Gene Maps Using the Breakpoint Distance. In: Bourque, G., El-Mabrouk, N. (eds.) RECOMB-CG 2006. LNCS (LNBI), vol. 4205, pp. 99–102. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Booth, K., Lueker, G.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Computer and System Sciences 13, 335–379 (1976)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Bryant, D.: The complexity of the breakpoint median problem. Technical Report CRM-2579. Centre de Recherches en Mathématiques, Université de Montréal (1998)Google Scholar
  6. 6.
    Chauve, C., Tannier, E.: A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genome. PLoS Comput. 4:e1000234 (2008)Google Scholar
  7. 7.
    DasGupta, B., Jiang, T., Kannan, S., Li, M., Sweedyk, E.: On the Complexity and Approximation of Syntenic Distance. Discrete Appl. Math. 88(1–3), 59–82 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  9. 9.
    Feretti, V., Nadeau, J.H., Sankoff, D.: Original synteny. In: Hirschberg, D.S., Meyers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 159–167. Springer, Heidelberg (1996)Google Scholar
  10. 10.
    Fu, Z., Jiang, T.: Computing the breaking distance between partially ordered genomes. In: APBC 2007, pp. 237–246 (2007)Google Scholar
  11. 11.
    Gramm, J., Niedermeier, R.: Breakpoint medians and breakpoint phylogenies: A fixed-parameter approach. Bioinformatics 18(Suppl. 2), S128–S139 (2002)Google Scholar
  12. 12.
    Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Jean, G., Sherman, D.M., Nikolski, M.: Mining the semantic of genome super-blocks to infer ancestral architectures. J. Comp. Biol. 16(9), 1267–1284 (2009)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Landau, G., Parida, L., Weimann, O.: Gene proximity analysis across whole genomes via PQ-trees. J. Comp. Biol. 12, 1289–1306 (2005)CrossRefGoogle Scholar
  15. 15.
    Ouangraoua, A., McPherson, A., Tannier, E., Chauve, C.: Insight into the structural evolution of amniote genomes. In: Preliminary version in Cold Spring Harbor Laboratory Genome Informatics Meeting 2009, poster 137 (2009)Google Scholar
  16. 16.
    Pe’er, I., Shamir, R.: The median problems for breakpoints are NP-complete. Elec. Colloq. Comput. Complexity, TR-98-071 (1998)Google Scholar
  17. 17.
    Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving problems under different genomic distances. BMC Bioinformatics 10, 120 (2009)CrossRefGoogle Scholar
  18. 18.
    Zheng, C., Lennert, A., Sankoff, D.: Reversal distance for partially ordered genomes. Bioinformatics 21(Suppl. 1), i502–i508 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Haitao Jiang
    • 1
    • 2
  • Cedric Chauve
    • 3
  • Binhai Zhu
    • 1
  1. 1.Department of Computer ScienceMontana State UniversityBozemanUSA
  2. 2.School of Computer Science and TechnologyShandong UniversityChina
  3. 3.Department of MathematicsSimon Fraser UniversityBurnabyCanada

Personalised recommendations