Advertisement

Stable Swarm Formation Control Using Onboard Sensor Information

  • Viet-Hong Tran
  • Suk-Gyu Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6146)

Abstract

In this paper, a stable leader-following formation control for multiple mobile robot systems with limited sensor information is studied. The proposed algorithm is to control a robot (follower) to follow another robot (leader), and easily extended to form any complex formation. The control algorithm requires information available from onboard sensors only, and utilizes estimation of leader’s acceleration in a simple form to reduce measurement of indirect information. There is also a rule to tune parameters of control in application.

Keywords

formation control leader-following control swarm robotics stability nonlinear 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liu, B., Chu, T., Wang, L., Xie, G.: Controllability of a leader–follower dynamic network with switching topology. IEEE Trans. Autom. Control 53, 1009–1013 (2008)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Xu, W.B., Chen, X.B.: Artificial moment method for swarm robot formation control. Sci. China Ser. F-Inf. Sci. 51, 1521–1531 (2008)zbMATHCrossRefGoogle Scholar
  3. 3.
    Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. Computer Graphics 21, 25–34 (1987)CrossRefGoogle Scholar
  4. 4.
    Lawton, J.R.T., Beard, R.W., Young, B.J.: A decentralized approach to formation maneuvers. IEEE Trans. Robot. Autom. 19(6), 933–941 (2003)CrossRefGoogle Scholar
  5. 5.
    Das, A.K., Fierro, R., Kumar, V., et al.: A vision-based formation control framework. IEEE Trans. Robot. Autom. 18, 813–825 (2002)CrossRefGoogle Scholar
  6. 6.
    Gustavi, T., Hu, X.: Observer-based leader-following formation control using onboard sensor information. IEEE Transactions on Robotics 24, 1457–1462 (2008)CrossRefGoogle Scholar
  7. 7.
    Wang, J., Wu, X., Xu, Z.: Potential-based obstacle avoidance in formation control. J. Control Theory Appl. 6, 311–316 (2008)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Barnes, L.E., Fields, M.A., Valavanis, K.P.: Swarm formation control utilizing elliptical surfaces and limiting functions. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics 39, 1434–1445 (2009)CrossRefGoogle Scholar
  9. 9.
    Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Flocking in teams of nonholonomic agents. Lect. Notes Contr. Inf., pp. 229–239. Springer, Berlin (2005)Google Scholar
  10. 10.
    Warburton, K., Lazarus, J.: Tendency-distance models of social cohesion in animal groups. Journal of Theoretical Biology 150, 473–488 (1991)CrossRefGoogle Scholar
  11. 11.
    Lewis, M.A., Tan, K.H.: High precision formation control of mobile robots using virtual structures autonomous. Autom Robot 4, 387–403 (1997)CrossRefGoogle Scholar
  12. 12.
    Egerstedt, M., Hu, X., Stotsky, A.: Control of mobile platforms using a virtual vehicle approach. IEEE Trans. Robot. Autom. 46, 1777–1782 (2001)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Desai, J.P.: A graph theoretic approach for modeling mobile robot team formation. J. Robot Syst. 19, 511–525 (2002)zbMATHCrossRefGoogle Scholar
  14. 14.
    Fierro, R., Das, A.K.: A modular architecture for formation control. In: Proceedings of the 3rd Int. Workshop on Robot Motion and Control, Poznan, pp. 285–290. IEEE Press, Los Alamitos (2002)CrossRefGoogle Scholar
  15. 15.
    Kang, W., Xi, N., Zhao, Y., Tan, J., Wang, Y.: Formation control of multiple autonomous vehicles- Theory and experimentation. Intell. Autom. Soft Comput. 10(2), 1–17 (2004)Google Scholar
  16. 16.
    Tanner, H.G., Pappas, G.J., Kumar, V.: Leader-to-formation stability. IEEE Trans. Robot. Autom. 20(3), 443–455 (2004)CrossRefGoogle Scholar
  17. 17.
    Gustavi, T., Hu, X., Karasalo, M.: Robust formation adaptation using on-board sensor information. In: 24th Chinese Control Conference, Guangzhou, pp. 1782–1788 (2005)Google Scholar
  18. 18.
    Khalil, H.: Nonlinear Systems, 2nd edn. Prentice Hall, New Jersey (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Viet-Hong Tran
    • 1
  • Suk-Gyu Lee
    • 1
  1. 1.Department of Electrical EngineeringYeungnam UniversityGyeongsanKorea

Personalised recommendations