Improving Multi-agent Negotiations Using Multi-Objective PSO Algorithm

  • Ahmad Esmaeili
  • Nasser Mozayani
Conference paper

DOI: 10.1007/978-3-642-13480-7_11

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6070)
Cite this paper as:
Esmaeili A., Mozayani N. (2010) Improving Multi-agent Negotiations Using Multi-Objective PSO Algorithm. In: Jędrzejowicz P., Nguyen N.T., Howlet R.J., Jain L.C. (eds) Agent and Multi-Agent Systems: Technologies and Applications. KES-AMSTA 2010. Lecture Notes in Computer Science, vol 6070. Springer, Berlin, Heidelberg

Abstract

Negotiation over limited resources, as a way for the agents to reach agreement, is one of the significant topics in Multi-Agent Systems (MASs). Most of the models proposed for negotiation suffer from different limitations in the number of the negotiation parties and issues as well as some constraining assumptions such as availability of unlimited computational resources and complete information about the participants. In this paper we make an attempt to ease the limitations specified above by means of a distributive agent based mechanism underpinned by Multi-Objective Swarm Optimization (MOPSO), as a fast and effective learning technique to handle the complexity and dynamics of the real-world negotiations. The experimental results of the proposed method reveal its effectiveness and high performance in presence of limited computational resources and tough deadlines.

Keywords

Negotiation Multi-Agent Systems Multi-Objective Particle Swarm Optimization PSO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ahmad Esmaeili
    • 1
  • Nasser Mozayani
    • 1
  1. 1.Department of Computer EngineeringIran University of Science & TechnologyTehranIran

Personalised recommendations