Improving Multi-agent Negotiations Using Multi-Objective PSO Algorithm

  • Ahmad Esmaeili
  • Nasser Mozayani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6070)


Negotiation over limited resources, as a way for the agents to reach agreement, is one of the significant topics in Multi-Agent Systems (MASs). Most of the models proposed for negotiation suffer from different limitations in the number of the negotiation parties and issues as well as some constraining assumptions such as availability of unlimited computational resources and complete information about the participants. In this paper we make an attempt to ease the limitations specified above by means of a distributive agent based mechanism underpinned by Multi-Objective Swarm Optimization (MOPSO), as a fast and effective learning technique to handle the complexity and dynamics of the real-world negotiations. The experimental results of the proposed method reveal its effectiveness and high performance in presence of limited computational resources and tough deadlines.


Negotiation Multi-Agent Systems Multi-Objective Particle Swarm Optimization PSO 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sycara, K.: Multi-agent compromise via negotiation. In: Gasser, L., Huhns, M. (eds.) Distributed Artificial Intelligence II, pp. 119–139. Morgan Kaufmann, San Francisco (1989)Google Scholar
  2. 2.
    Rubenstein-Montano, B., Malaga, R.A.: A Weighted Sum Genetic Algorithm to Support Multiple-Party Multi-Objective Negotiations. IEEE Transactions on Evolutionary Computation 6(4), 366–377 (2002)CrossRefGoogle Scholar
  3. 3.
    Kraus, S.: Negotiation and cooperation in multi-agent environments. Artificial Intelligence 94(1-2), 79–97 (1997)MATHCrossRefGoogle Scholar
  4. 4.
    Pruitt, D.: Negotiation Behaviour. Academic Press, London (1981)Google Scholar
  5. 5.
    Rubinstein: Perfect equilibrium in a bargaining model. Econometrica 50(1), 97–109 (1982)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    von Neumann, J., Morgenstern, O.: The Theory of Games and Economic Behaviour. Princeton University Press, Princeton (1994)Google Scholar
  7. 7.
    Fatima, S., Wooldridge, M., Jennings, N.R.: Comparing Equilibria for Game-Theoretic and Evolutionary Bargaining Models. In: Proceedings of the International Workshop on Agent-Mediated Electronic Commerce V, Melbourne, Australia, pp. 70–77 (2003)Google Scholar
  8. 8.
    He, M., Jennings, N.R., Leung, H.: On agent-mediated electronic commerce. IEEE Trans. on Knowledge and Data Engineering 15(4), 985–1003 (2003)CrossRefGoogle Scholar
  9. 9.
    Harsanyi, J., Selten, R.: A generalised nash solution for two-person bargaining games with incomplete information. Management Sciences 18(5), 80–106 (1972)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Krovi, R., Graesser, A., Pracht, W.: Agent behaviors in virtual negotiation environments. IEEE Transactions on Systems, Man, and Cybernetics 29(1), 15–25 (1999)CrossRefGoogle Scholar
  11. 11.
    Matwin, S., Szapiro, T., Haigh, K.: Genetic algorithm approach to a negotiation support system. IEEE Transactions on Systems Man and Cybernetics 21(1), 102–114 (1991)CrossRefGoogle Scholar
  12. 12.
    Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proc. of IEEE Int. Conf. on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)Google Scholar
  13. 13.
    Alvarez-Benitez, J.E., Everson, R.M., Fieldsend, J.E.: A MOPSO algorithm based exclusively on Pareto dominance concepts. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 459–473. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Rosenschein, J., Zlotkin, G.: Task oriented domains. In: Rules of Encounter: Designing Conventions for Automated Negotiation among Computers, pp. 29–52. MIT Press, Cambridge (1994)Google Scholar
  15. 15.
    Barbuceanu, M., Lo, W.K.: Multi-attribute utility theoretic negotiation for electronic commerce. In: Dignum, F., Cortés, U. (eds.) AMEC 2000. LNCS (LNAI), vol. 2003, pp. 15–30. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Faratin, P., Sierra, C., Jennings, N.R.: Using similarity criteria to make issue trade-offs in automated negotiations. Artificial Intelligence 142(2), 205–237 (2002)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Raiffa, H.: The Art and Science of Negotiation. Harvard University Press, Cambridge (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ahmad Esmaeili
    • 1
  • Nasser Mozayani
    • 1
  1. 1.Department of Computer EngineeringIran University of Science & TechnologyTehranIran

Personalised recommendations