Advertisement

The Structure of Model Membranes Studied by Vibrational Sum Frequency Spectroscopy

  • Jonathan F. D. Liljeblad
  • Mark W. Rutland
  • Vincent Bulone
  • C. Magnus Johnson
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 137)

Abstract

The structure and order of insoluble Langmuir monolayers consisting of 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC or 18:0 PC) and the surrounding water molecules have been investigated by vibrational sum frequency spectroscopy (VSFS). At surface pressures of 1, 15, and 57 mN/m corresponding to molecular areas of 53, 50, and 43 Å2, respectively, the DSPC molecules formed a well ordered film. Both the VSF signal from the methyl stretching vibrations of the lipid and the surrounding water increased with enhanced surface pressure, as a result of the higher surface density and increased order of the system. Water molecules hydrating the polar parts of the headgroup and in close contact to the hydrocarbon groups of the lipid were observed in all three polarization combinations of the laser beams, and distinguished by their different vibrational frequencies.

Keywords

Vibrational sum frequency spectroscopy SFG DSPC Langmuir film membrane 

Notes

Acknowledgements

The authors thank Dr. Eric Tyrode (KTH) for valuable discussions. This project was supported by the Swedish Centre for Biomimetic Fiber Engineering (Biomime), the Swedish foundation for strategic research (SSF), and the Swedish research council (VR). Rutland is a fellow of VR and Johnson holds an Ingvar Carlsson (SSF) grant.

References

  1. 1.
    Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry 5th ed., W.H. Freeman & Co, New YorkGoogle Scholar
  2. 2.
    Shen YR (1989) Nature 337: 519CrossRefGoogle Scholar
  3. 3.
    Kaganer VM, Mohwald H, Dutta P (1999) Rev Mod Phys 71: 779CrossRefGoogle Scholar
  4. 4.
    Johnson CM, Tyrode E, Baldelli S, Rutland MW, Leygraf C (2005) J Phys Chem B 109: 321CrossRefGoogle Scholar
  5. 5.
    Mitchell ML, Dluhy RA (1988) J Am Chem Soc 110: 712CrossRefGoogle Scholar
  6. 6.
    Phillips MC, Chapman D (1968) Biochim Biophys Acta, Biomembr 163: 301CrossRefGoogle Scholar
  7. 7.
    Du Q, Superfine R, Freysz E, Shen YR (1993) Phys Rev Lett 70: 2313CrossRefGoogle Scholar
  8. 8.
    Wei X, Shen YR (2001) Phys Rev Lett 86: 4799CrossRefGoogle Scholar
  9. 9.
    Lu R, Gan W, Wu B-h, Zhang Z, Guo Y, Wang H-f., (2005) J Phys Chem B 109: 14118CrossRefGoogle Scholar
  10. 10.
    Guyot-Sionnest P, Hunt JH, Shen YR (1987) Phys Rev Lett 59: 1597CrossRefGoogle Scholar
  11. 11.
    Tyrode E, Johnson CM, Kumpulainen A, Rutland MW, Claesson (2005) J Am Chem Soc 127: 16848CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jonathan F. D. Liljeblad
    • 1
  • Mark W. Rutland
    • 1
  • Vincent Bulone
    • 2
  • C. Magnus Johnson
    • 1
  1. 1.Division of Surface and Corrosion ScienceRoyal Institute of Technology (KTH)StockholmSweden
  2. 2.Division of GlycoscienceRoyal Institute of Technology (KTH)StockholmSweden

Personalised recommendations