Synoptic Analysis of Mangroves for Coastal Zone Management

  • G. Krause
  • M. Bock
Part of the Ecological Studies book series (ECOLSTUD, volume 211)


The chapter describes the research strategy, which was used to integrate remote sensing data, aerial photographs and point data provided by fieldwork from different scientific fields within the MADAM project and their respective outputs. Using various innovative processing techniques and different scale resolution levels, an assessment of temporal–spatial changes of the mangrove peninsula and the adjacent rural socio-economic impact area, the type of mangrove structure as well as a land use cover analysis was undertaken. The definition of the spatial level of detail was found to be a major issue during the processing and analysis procedures. The deeper understanding of the cause-and-consequences of change is a necessity in order to allow for reasonable predictions of likely development trajectories into the future and to elaborate on potential thresholds of concerns at which management measures would be timely. The relevance of scale resolution in this context implies the need for different management measures and sets of specific interdisciplinary studies and monitoring at nested scales.


Global Position System Mangrove Forest Mangrove Species Mangrove Ecosystem Ground Truth Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baatz M, Schäpe A (2000) Multiresolution segmentation – an optimization approach for high quality multi-scale image segmentation. In: Strobl J, Blaschke T, Griesebner G (eds) Angewandte Geographische Informationsverarbeitung XII. Beitrage zum AGIT-Symposium Salzburg. Herbert Wichmann Verlag, Heidelberg, pp 12–23Google Scholar
  2. Barbier EB (1994) Valuing environmental functions: tropical wetlands. Land Econ 70:155–173CrossRefGoogle Scholar
  3. Blaschke T (2000) Objektextraktion und regelbasierte Klassifikation von Fernerkundungsdaten: Neue Möglichkeiten für GIS-Anwender und Planer. In: 5. Symposium “Computergestützte Raumplanung” – CORP2000, pp 153–162Google Scholar
  4. Bock M, Weiers S, Hanatschek R, Schwarz H, Klose F (2006) Schlussbericht Unterauftrag Fernerkundung. MADAM III, Mangrove Dynamics and Management, BremenGoogle Scholar
  5. Bunt JS (1999) Overlap in mangrove species zonal patterns: some methods of analysis. Mangr Salt Marsh 3:155–164CrossRefGoogle Scholar
  6. Bunt JS, Bunt ED (1999) Complexity and variety of zonal pattern in the mangroves of the Hinchinbrook area, Northeastern Australia. Mangr Salt Marsh 3:165–176CrossRefGoogle Scholar
  7. Bunt JS, Stieglitz T (1999) Indicators of mangrove zonality: the Normanby River, N.E. Australia. Mangr Salt Marsh 3:177–184CrossRefGoogle Scholar
  8. Buttenfield BP (2001) Mapping ecological uncertainty. In: Hunsaker CT, Goodchild MF, Friedl MA, Case TJ (eds) Spatial uncertainty in ecology – Implications for remote sensing and GIS Applications. Springer, Berlin, pp 115–132Google Scholar
  9. Cantera JR, Arnaud PM (1997) Structure et distribution des associations de mangrove de deux baies de la côte pacifique de Colombie. In: Kjerfve B, Lacerda LD, Diop EHS (eds) Mangrove ecosystem studies in Latin America and Africa. UNESCO, Paris, pp 71–97Google Scholar
  10. Dale PER, Chandica AL, Evans M (1996) Using image subtraction and classification to evaluate change in subtropical intertidal wetlands. Int J Remote Sens 17:703–719CrossRefGoogle Scholar
  11. Definiens (eds) (2004) eCognition user guide 4, MünchenGoogle Scholar
  12. Duke NC, Meynecke JO, Dittmann S, Ellison AM, Anger K, Berger U, Cannicci S, Diele K, Ewel KC, Field CD, Koedam N, Lee SY, Marchand C, Nordhaus I, Smith TJ III, Dahoud-Guebas F (2007) A world without mangroves? Science 317:41–42PubMedCrossRefGoogle Scholar
  13. Fortin MJ, Edwards G (2001) Delineation and analysis of vegetation boundaries. In: Hunsaker CT, Goodchild MF, Friedl MA, Case TJ (eds) Spatial uncertainty in ecology. Springer, New York, pp 158–174CrossRefGoogle Scholar
  14. Franklin SE (2001) Modelling forest net primary productivity with reduced uncertainty by remote sensing of cover type and leaf area index. In: Hunsaker CT, Goodchild MF, Friedl MA, Case TJ (eds) (2001) Spatial uncertainty in ecology. Springer, New York, pp 284–307CrossRefGoogle Scholar
  15. Gao J (1998) A hybrid method toward accurate mapping of mangroves in a marginal habitat from SPOT multispectral data. Int J Remote Sens 19:1887–1899CrossRefGoogle Scholar
  16. Gao J (1999) A comparative study on spatial and spectral resolutions of satellite data in mapping mangrove forests. Int J Remote Sens 20:2823–2833CrossRefGoogle Scholar
  17. Green EP, Mumby PJ, Edwards AJ, Clark CD, Ellis AC (1997) Estimating leaf area index of mangroves from satellite data. Aquat Bot 58:11–19CrossRefGoogle Scholar
  18. Hamilton L, Dixon J, Miller G (1989) Mangroves: an undervalued resource of the land and the sea. In: Borgese EM, Ginsburg N (eds) Ocean yearbook VIII. University of Chicago Press, Chicago, pp 254–288Google Scholar
  19. Hogarth PJ (1999) The biology of mangroves. Oxford University Press, OxfordGoogle Scholar
  20. Khan FA, Choudhury AM, Jinnahtul Islam MD (1990) Timber volume inventory in the sunderbans using aerial photography and other remote sensing techniques. Mangr Ecosyst Occas Pap 9:3–21Google Scholar
  21. Kleinod K, Wissen M, Bock M (2005) Detecting vegetation changes in a wetland area in Northern Germany using earth observation and geodata. J Nat Conserv 13:115–125CrossRefGoogle Scholar
  22. Krause G, Schories D, Glaser M, Diele K (2001) Spatial patterns of mangrove ecosystems: the bragantinian mangroves of northern Brazil (Bragança, Pará). Ecotropica 7:93–107Google Scholar
  23. Krause G, Bock M, Weiers S, Braun G (2004) Mapping land-cover and mangrove structures with remote sensing techniques - a contribution to a synoptic GIS in support of coastal management in North Brazil. Environ Manag 34:429–440CrossRefGoogle Scholar
  24. Lal P (2003) Economic valuation of mangroves and decision-making in the Pacific. Ocean Coast Manag 46:823–844CrossRefGoogle Scholar
  25. Mehlig U (2001) Aspects of mangrove tree primary production in an equatorial mangrove forest in Brazil. PhD thesis, University of Bremen, Bremen. ZMT Contribution vol 14Google Scholar
  26. Park NW, Chi KH, Kwon BD (2007) Accounting for spatial patterns of multiple geological data sets in geological thematic mapping using GIS-based spatial analysis. Environ Geol 51:1147–1155CrossRefGoogle Scholar
  27. Piou C, Berger U, Hildenbrandt H, Grimm V, Diele K, D’Lima C (2007) Simulating cryptic movements of a mangrove crab: recovery phenomena after small-scale fishery. Ecol Modell 205:110–122CrossRefGoogle Scholar
  28. Prost MT (1997) La mangrove de front de mer en Guyane: ses transformations sous l'influence du systéme de dispersion amazonien et sou suivi par télédétection. In: Kjerfve B, Lacerda LD, Diop ES (eds) Mangrove ecosystem studies in Latin America and Africa. UNESCO, Paris, pp 11–126Google Scholar
  29. Rasolofoharinoro M, Blasco F, Bellan MF, Aizpuru M, Gauquelin T, Denis J (1998) A remote sensing based methodology for mangrove studies in Madagascar. Int J Remote Sens 19:1873–1886CrossRefGoogle Scholar
  30. Richter R (1996) A spatially adaptive fast atmospheric correion algorithm. Int J Remote Sens 17:1201–1214CrossRefGoogle Scholar
  31. Rönnbäck P (1999) The ecological basis for economic value of seafood production supported by mangrove ecosystems. Ecol Econ 29:235–252CrossRefGoogle Scholar
  32. Schwarz H (2005) Klassifikation von Mangroven des Caeté-Ästuars an der Nordküste Brasiliens im Staat Pará mit Hilfe eines objektorientierten Verfahrens auf der Basis von IKONOS-Daten. Dipl Thesis, University of Trier, TrierGoogle Scholar
  33. Smith GM, Spencer T, Murray AL, French JR (1998) Assessing seasonal vegetation change in coastal wetlands with airborne remote sensing: an outline methodology. Mangr Salt Marsh 2:15–28CrossRefGoogle Scholar
  34. Souza-Filho PWM, El-Robrini M (1997) A influência da variação do nivel do mar na sedimentação da Planície Costeira Bragantina durante o Holoceno. In: Costa M, Angélica R (eds) Contribuições à Geologia da Amazônia. FINEP, Belém, pp 307–358Google Scholar
  35. Spalding MD, Blasco F, Field CD (1997) World mangrove atlas. The International Society for Mangrove Ecosystems, Okinawa, JapanGoogle Scholar
  36. Valiela I, Bowen JL, York JK (2001) Mangrove forests: one of the world's threatened major tropical environments. Bioscience 51:807–815CrossRefGoogle Scholar
  37. Wang L, Sousa WP, Gong P, Biging GS (2004a) Comparison of IKONOS and QUICKBIRD images for mapping mangrove species on the Caribbean coast of Panama. Remote Sens Environ 91:432–440CrossRefGoogle Scholar
  38. Wang L, Sousa WP, Gong P (2004b) Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. Int J Remote Sens 25:5655–5668CrossRefGoogle Scholar
  39. Weiers S, Wissen M, Bock M, Schade B (2001) Satellitenfernerkundung im Naturschutz – vom Pilotprojekt zur operationellen Anwendung. Photogrammetrie Fernerkundung Geoinformation 3:177–189Google Scholar
  40. Weiers S, Bock M, Wissen M, Rossner G (2004) Mapping and indicator approaches for the assessment of habitats at different scales using remote sensing and GIS methods. Landsc Urban Plan 67:43–65CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Leibniz Center for Tropical Marine EcologyBremenGermany
  2. 2.German Remote Sensing Data Center, Environment and SecurityGerman Aerospace CenterOberpfaffenhofen-WesslingGermany

Personalised recommendations