Skip to main content

Methylxanthines, Seizures, and Excitotoxicity

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 200))

Abstract

Clinical evidence, in particular the wide use of theophylline as a bronchodilator, suggests that methylxanthines can cause seizures in patients without known underlying epilepsy. Theophylline is also known to be an added risk factor for seizure exacerbation in patients with epilepsy. The proconvulsant activity of methylxanthines can best be explained by their antagonizing the brain’s own anticonvulsant adenosine. Recent evidence suggests that adenosine dysfunction is a pathological hallmark of epilepsy contributing to seizure generation and seizure spread. Conversely, adenosine augmentation therapies are effective in seizure suppression and prevention, whereas adenosine receptor antagonists such as methylxanthines generally exacerbate seizures. The impact of the methylxanthines caffeine and theophylline on seizures and excitotoxicity depends on timing, dose, and acute versus chronic use. New findings suggest a role of free radicals in theophylline-induced seizures, and adenosine-independent mechanisms for seizure generation have been proposed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aminoff MJ, Simon RP (1980) Status epilepticus. Causes, clinical features and consequences in 98 patients. Am J Med 69:657–666

    PubMed  CAS  Google Scholar 

  • Asadi-Pooya AA, Mintzer S, Sperling MR (2008) Nutritional supplements, foods, and epilepsy: is there a relationship? Epilepsia 49:1819–1827

    PubMed  CAS  Google Scholar 

  • Baldwin SA, Beal PR, Yao SY, King AE, Cass CE, Young JD (2004) The equilibrative nucleoside transporter family, SLC29. Pflugers Arch 447:735–743

    PubMed  CAS  Google Scholar 

  • Barnes PJ (2005) Targeting histone deacetylase 2 in chronic obstructive pulmonary disease treatment. Expert Opin Ther Targets 9:1111–1121

    PubMed  CAS  Google Scholar 

  • Benarroch EE (2008) Adenosine and its receptors: multiple modulatory functions and potential therapeutic targets for neurologic disease. Neurology 70:231–236

    PubMed  Google Scholar 

  • Boison D (2005) Adenosine and epilepsy: from therapeutic rationale to new therapeutic strategies. Neuroscientist 11:25–36

    PubMed  CAS  Google Scholar 

  • Boison D (2006) Adenosine kinase, epilepsy and stroke: mechanisms and therapies. Trends Pharmacol Sci 27:652–658

    PubMed  CAS  Google Scholar 

  • Boison D (2008) The adenosine kinase hypothesis of epileptogenesis. Prog Neurobiol 84:249–262

    PubMed  CAS  Google Scholar 

  • Boison D (2009) Adenosine augmentation therapies (AATs) for epilepsy: prospect of cell and gene therapies. Epilepsy Res 85:131–141

    PubMed  CAS  Google Scholar 

  • Bonfiglio MF, Dasta JF (1991) Clinical significance of the benzodiazepine-theophylline interaction. Pharmacotherapy 11:85–87

    PubMed  CAS  Google Scholar 

  • Chakrabarti A, Saini HK, Garg SK (1997) A comparative study of aminophylline- and acepifylline-induced seizures and death in the chemoconvulsion model in rats. J Pharm Pharmacol 49:812–815

    PubMed  CAS  Google Scholar 

  • Chan MH, Chen HH (2003) Toluene exposure increases aminophylline-induced seizure susceptibility in mice. Toxicol Appl Pharmacol 193:303–308

    PubMed  CAS  Google Scholar 

  • Chan SL, Mayne M, Holden CP, Geiger JD, Mattson MP (2000) Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. J Biol Chem 275:18195–18200

    PubMed  CAS  Google Scholar 

  • Chase TN, Bibbiani F, Bara-Jimenez W, Dimitrova T, Oh-Lee JD (2003) Translating A2A antagonist KW6002 from animal models to parkinsonian patients. Neurology 61:S107–S111

    PubMed  CAS  Google Scholar 

  • Chu NS (1981) Caffeine- and aminophylline-induced seizures. Epilepsia 22:85–94

    PubMed  CAS  Google Scholar 

  • Cotter G, Dittrich HC, Weatherley BD, Bloomfield DM, O'Connor CM, Metra M, Massie BM (2008) The PROTECT pilot study: a randomized, placebo-controlled, dose-finding study of the adenosine A(1) receptor antagonist rolofylline in patients with acute heart failure and renal impairment. J Card Fail 14:631–640

    PubMed  CAS  Google Scholar 

  • Cunha RA (2005) Neuroprotection by adenosine in the brain: from A1 receptor activation to A2A receptor blockade. Purinergic Signal 1:111–134

    PubMed  CAS  Google Scholar 

  • de Mendonca A, Sebastiao AM, Ribeiro JA (2000) Adenosine: does it have a neuroprotective role after all? Brain Res Brain Res Rev 33:258–274

    PubMed  Google Scholar 

  • Delanty N, Vaughan CJ, French JA (1998) Medical causes of seizures. Lancet 352:383–390

    PubMed  CAS  Google Scholar 

  • DeLorenzo RJ, Sun DA, Deshpande LS (2005) Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintainance of epilepsy. Pharmacol Ther 105:229–266

    PubMed  CAS  Google Scholar 

  • Duby JJ, Campbell RK, Setter SM, White JR, Rasmussen KA (2004) Diabetic neuropathy: an intensive review. Am J Health Syst Pharm 61:160–73

    PubMed  CAS  Google Scholar 

  • Dulla CG, Dobelis P, Pearson T, Frenguelli BG, Staley KJ, Masino SA (2005) Adenosine and ATP link P-CO2 to cortical excitability via pH. Neuron 48:1011–1023

    PubMed  CAS  Google Scholar 

  • Dunwiddie TV (1980) Endogenously released adenosine regulates excitability in the in vitro hippocampus. Epilepsia 21:541–548

    PubMed  CAS  Google Scholar 

  • Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55

    PubMed  CAS  Google Scholar 

  • Dunwiddie TV, Worth T (1982) Sedative and anticonvulsant effects of adenosine analogs in mouse and rat. J Pharmacol Exp Ther 220:70–76

    PubMed  CAS  Google Scholar 

  • Dunwiddie TV, Hoffer BJ, Fredholm BB (1981) Alkylxanthines elevate hippocampal excitability. Evidence for a role of endogenous adenosine. Naunyn Schmiedebergs Arch Pharmacol 316:326–330

    PubMed  CAS  Google Scholar 

  • El Yacoubi M, Ledent C, Parmentier M, Daoust M, Costentin J, Vaugeois J (2001) Absence of the adenosine A(2A) receptor or its chronic blockade decrease ethanol withdrawal-induced seizures in mice. Neuropharmacology 40:424–432

    PubMed  CAS  Google Scholar 

  • El Yacoubi M, Ledent C, Parmentier M, Costentin J, Vaugeois JM (2008) Evidence for the involvement of the adenosine A(2A) receptor in the lowered susceptibility to pentylenetetrazol-induced seizures produced in mice by long-term treatment with caffeine. Neuropharmacology 55:35–40

    PubMed  CAS  Google Scholar 

  • El Yacoubi M, Ledent C, Parmentier M, Costentin J, Vaugeois JM (2009) Adenosine A2A receptor deficient mice are partially resistant to limbic seizures. Naunyn Schmiedebergs Arch Pharmacol 380:223–232

    PubMed  Google Scholar 

  • Etherington LA, Patterson GE, Meechan L, Boison D, Irving AJ, Dale N, Frenguelli B (2009) Astrocytic adenosine kinase regulates basal synaptic adenosine levels and seizure activity but not activity-dependent adenosine release in the hippocampus. Neuropharmacology 56:429–437

    PubMed  CAS  Google Scholar 

  • Fedele DE, Li T, Lan JQ, Fredholm BB, Boison D (2006) Adenosine A1 receptors are crucial in keeping an epileptic focus localized. Exp Neurol 200:184–190

    PubMed  CAS  Google Scholar 

  • Fick DM, Cooper JW, Wade WE, Waller JL, Maclean JR, Beers MH (2003) Updating the Beers criteria for potentially inappropriate medication use in older adults: results of a US consensus panel of experts. Arch Intern Med 163:2716–2724

    PubMed  Google Scholar 

  • Fredholm BB (1997) Adenosine and neuroprotection. Int Rev Neurobiol 40:259–280

    PubMed  CAS  Google Scholar 

  • Fredholm BB (2003) Adenosine receptors as targets for drug development. Drug News Perspect 16:283–289

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM (2005a) Adenosine and brain function. Int Rev Neurobiol 63:191–270

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Chen JF, Masino SA, Vaugeois JM (2005b) Actions of adenosine at its receptors in the CNS: insights from knockouts and drugs. Annu Rev Pharmacol Toxicol 45:385–412

    PubMed  CAS  Google Scholar 

  • Gasior M, Swiader M, Przybylko M, Borowicz K, Turski WA, Kleinrok Z, Czuczwar SJ (1998) Felbamate demonstrates low propensity for interaction with methylxanthines and Ca2+ channel modulators against experimental seizures in mice. Eur J Pharmacol 352:207–214

    PubMed  CAS  Google Scholar 

  • Georgiev V, Johansson B, Fredholm BB (1993) Long-term caffeine treatment leads to a decreased susceptibility to NMDA-induced clonic seizures in mice without changes in adenosine A1 receptor number. Brain Res 612:271–277

    PubMed  CAS  Google Scholar 

  • Gillum JG, Israel DS, Polk RE (1993) Pharmacokinetic drug interactions with antimicrobial agents. Clin Pharmacokinet 25:450–482

    PubMed  CAS  Google Scholar 

  • Gouder N, Fritschy JM, Boison D (2003) Seizure suppression by adenosine A1 receptor activation in a mouse model of pharmacoresistant epilepsy. Epilepsia 44:877–885

    PubMed  CAS  Google Scholar 

  • Gouder N, Scheurer L, Fritschy J-M, Boison D (2004) Overexpression of adenosine kinase in epileptic hippocampus contributes to epileptogenesis. J Neurosci 24:692–701

    PubMed  CAS  Google Scholar 

  • Gulati K, Ray A, Pal G, Vijayan VK (2005) Possible role of free radicals in theophylline-induced seizures in mice. Pharmacol Biochem Behav 82:241–245

    PubMed  CAS  Google Scholar 

  • Gulati K, Ray A, Vijayan VK (2007) Free radicals and theophylline neurotoxicity: an experimental study. Cell Mol Biol (Noisy-le-grand) 53:42–52

    CAS  Google Scholar 

  • Harinath S, Sikdar SK (2005) Inhibition of human TREK-1 channels by caffeine and theophylline. Epilepsy Res 64:127–135

    PubMed  CAS  Google Scholar 

  • Hauser RA, Hubble JP, Truong DD (2003) Randomized trial of the adenosine A(2A) receptor antagonist istradefylline in advanced PD. Neurology 61:297–303

    PubMed  CAS  Google Scholar 

  • Honore E (2007) The neuronal background K2P channels: focus on TREK1. Nat Rev Neurosci 8:251–261

    PubMed  CAS  Google Scholar 

  • Huber A, Padrun V, Deglon N, Aebischer P, Mohler H, Boison D (2001) Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy. Proc Natl Acad Sci USA 98:7611–7616

    PubMed  CAS  Google Scholar 

  • Iglesias R, Dahl G, Qiu F, Spray DC, Scemes E (2009) Pannexin 1: the molecular substrate of astrocyte “hemichannels”. J Neurosci 29:7092–7097

    PubMed  CAS  Google Scholar 

  • Imperatore C, Trimarchi GR, De Sarro A (1997) Interaction between pefloxacin and aminophylline in genetically epilepsy-prone rats. J Pharm Pharmacol 49:1025–1029

    PubMed  CAS  Google Scholar 

  • Iyadurai SJ, Chung SS (2007) New-onset seizures in adults: possible association with consumption of popular energy drinks. Epilepsy Behav 10:504–508

    PubMed  Google Scholar 

  • Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264

    PubMed  CAS  Google Scholar 

  • Jacobson KA, von Lubitz DKJE, Daly JW, Fredholm BB (1996) Adenosine receptor ligands: differences with acute versus chronic treatment. Trends Pharmacol Sci 17:108–113

    PubMed  CAS  Google Scholar 

  • Johannson B, Ahlberg S, van der Ploeg I, Brené S, Lindefors N, Persson H, Fredholm BB (1993) Effect of long term caffeine treatment on A1 and A2 adenosine receptor binding and on mRNA levels in rat brain. Naunyn Schmiedeberg's Arch Pharmacol 347:407–414

    Google Scholar 

  • Johansson B, Georgiev V, Kuosmanen T, Fredholm BB (1996) Long-term treatment with some methylxanthines decreases the susceptibility to bicuculline- and pentylenetetrazol-induced seizures in mice. Relationship to c-fos expression and receptor binding. Eur J Neurosci 8:2447–2458

    PubMed  CAS  Google Scholar 

  • Kang J, Kang N, Lovatt D, Torres A, Zhao Z, Lin J, Nedergaard M (2008) Connexin 43 hemichannels are permeable to ATP. J Neurosci 28:4702–4711

    PubMed  CAS  Google Scholar 

  • Kaufman KR, Sachdeo RC (2003) Caffeinated beverages and decreased seizure control. Seizure 12: 519–521

    PubMed  Google Scholar 

  • Klitgaard H, Matagne A, Gobert J, Wulfert E (1998) Evidence for a unique profile of levetiracetam in rodent models of seizures and epilepsy. Eur J Pharmacol 353:191–206

    PubMed  CAS  Google Scholar 

  • Kochanek PM, Vagni VA, Janesko KL, Washington CB, Crumrine PK, Garman RH, Jenkins LW, Clark RS, Homanics GE, Dixon CE, Schnermann J, Jackson EK (2006) Adenosine A1 receptor knockout mice develop lethal status epilepticus after experimental traumatic brain injury. J Cereb Blood Flow Metab 26:565–575

    PubMed  CAS  Google Scholar 

  • Korematsu S, Miyahara H, Nagakura T, Suenobu S, Izumi T (2008) Theophylline-associated seizures and their clinical characterizations. Pediatr Int 50:95–98

    PubMed  Google Scholar 

  • Kulkarni C, Joseph T, David J (1991) Influence of adenosine receptor antagonists, aminophylline and caffeine, on seizure protective ability of antiepileptic drugs in rats. Indian J Exp Biol 29:751–754

    PubMed  CAS  Google Scholar 

  • Lado FA, Moshe SL (2008) How do seizures stop? Epilepsia 49:1651–1664

    PubMed  Google Scholar 

  • Li T, Lan JQ, Fredholm BB, Simon RP, Boison D (2007a) Adenosine dysfunction in astrogliosis: cause for seizure generation? Neuron Glia Biol 3:353–366

    PubMed  Google Scholar 

  • Li T, Steinbeck JA, Lusardi T, Koch P, Lan JQ, Wilz A, Segschneider M, Simon RP, Brustle O, Boison D (2007b) Suppression of kindling epileptogenesis by adenosine releasing stem cell-derived brain implants. Brain 130:1276–1288

    PubMed  Google Scholar 

  • Li T, Ren G, Lusardi T, Wilz A, Lan JQ, Iwasato T, Itohara S, Simon RP, Boison D (2008) Adenosine kinase is a target for the prediction and prevention of epileptogenesis in mice. J Clin Inv 118:571–582

    CAS  Google Scholar 

  • Li T, Lan JQ, Boison D (2009) Uncoupling of astrogliosis from epileptogenesis in adenosine kinase (ADK) transgenic mice. Neuron Glia Biol 4:91–99

    Google Scholar 

  • Lloyd HG, Fredholm BB (1995) Involvement of adenosine deaminase and adenosine kinase in regulating extracellular adenosine concentration in rat hippocampal slices. Neurochem Int 26:387–395

    PubMed  CAS  Google Scholar 

  • Loscher W (2009) Preclinical assessment of proconvulsant drug activity and its relevance for predicting adverse events in humans. Eur J Pharmacol 610:1–11

    PubMed  Google Scholar 

  • Luszczki JJ, Jankiewicz K, Jankiewicz M, Czuczwar SJ (2007) Influence of aminophylline on the anticonvulsive action of gabapentin in the mouse maximal electroshock seizure threshold model. J Neural Transm 114:1539–1545

    PubMed  CAS  Google Scholar 

  • Marangos PJ, Paul SM, Parma AM, Goodwin FK, Syapin P, Skolnick P (1979) Purinergic inhibition of diazepam binding to rat brain (in vitro). Life Sci 24:851–857

    PubMed  CAS  Google Scholar 

  • McGaraughty S, Cowart M, Jarvis MF, Berman RF (2005) Anticonvulsant and antinociceptive actions of novel adenosine kinase inhibitors. Curr Top Med Chem 5:43–58

    PubMed  CAS  Google Scholar 

  • McPherson PS, Kim YK, Valdivia H, Knudson CM, Takekura H, Franzini-Armstrong C, Coronado R, Campbell KP (1991) The brain ryanodine receptor: a caffeine-sensitive calcium release channel. Neuron 7:17–25

    PubMed  CAS  Google Scholar 

  • Nagarkatti N, Deshpande LS, DeLorenzo RJ (2008) Levetiracetam inhibits both ryanodine and IP3 receptor activated calcium induced calcium release in hippocampal neurons in culture. Neurosci Lett 436:289–293

    PubMed  CAS  Google Scholar 

  • Nakada T, Kwee IL, Lerner AM, Remler MP (1983) Theophylline-induced seizures: clinical and pathophysiologic aspects. West J Med 138:371–374

    PubMed  CAS  Google Scholar 

  • Nehlig A, Daval JL, Debry G (1992) Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Brain Res Rev 17:139–170

    PubMed  CAS  Google Scholar 

  • Nolan JP, Deakin CD, Soar J, Bottiger BW, Smith G (2005) European Resuscitation Council guidelines for resuscitation 2005. Section 4. Adult advanced life support. Resuscitation 67(Suppl 1):S39–S86

    PubMed  Google Scholar 

  • Pal S, Sun D, Limbrick D, Rafiq A, DeLorenzo RJ (2001) Epileptogenesis induces long-term alterations in intracellular calcium release and sequestration mechanisms in the hippocampal neuronal culture model of epilepsy. Cell Calcium 30:285–296

    PubMed  CAS  Google Scholar 

  • Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116

    PubMed  CAS  Google Scholar 

  • Patsalos PN, Froscher W, Pisani F, van Rijn CM (2002) The importance of drug interactions in epilepsy therapy. Epilepsia 43:365–385

    PubMed  CAS  Google Scholar 

  • Phillis JW (1979) Diazepam potentiation of purinergic depression of central neurons. Can J Physiol Pharmacol 57:432–435

    PubMed  CAS  Google Scholar 

  • Puiroud S, Pinard E, Seylaz J (1988) Dynamic cerebral and systemic circulatory effects of adenosine, theophylline and dipyridamole. Brain Res 453:287–298

    PubMed  CAS  Google Scholar 

  • Ramzan IM, Levy G (1986) Kinetics of drug action in disease states. XVI. Pharmacodynamics of theophylline-induced seizures in rats. J Pharmacol Exp Ther 236:708–713

    PubMed  CAS  Google Scholar 

  • Ray A, Gulati K, Anand S, Vijayan VK (2005) Pharmacological studies on mechanisms of aminophylline-induced seizures in rats. Indian J Exp Biol 43:849–853

    PubMed  CAS  Google Scholar 

  • Rebola N, Coelho JE, Costenla AR, Lopes LV, Parada A, Oliveira CR, Soares-da-Silva P, de Mendonca A, Cunha RA (2003) Decrease of adenosine A1 receptor density and of adenosine neuromodulation in the hippocampus of kindled rats. Eur J Neurosci 18:820–828

    PubMed  Google Scholar 

  • Ren G, Li T, Lan JQ, Wilz A, Simon RP, Boison D (2007) Lentiviral RNAi-induced downregulation of adenosine kinase in human mesenchymal stem cell grafts: a novel perspective for seizure control. Exp Neurol 208:26–37

    PubMed  CAS  Google Scholar 

  • Ribeiro JA, Sebastiao AM, de Mendonca A (2002) Adenosine receptors in the nervous system: pathophysiological implications. Prog Neurobiol 68:377–392

    PubMed  CAS  Google Scholar 

  • Roussinov KS, Lazarova MB, Atanassova-Shopova S (1974) Experimental study of the effect of lithium, haloperidol, caffeine and theophylline on convulsive seizure reactions. Acta Physiol Pharmacol Bulg 2:67–75

    PubMed  CAS  Google Scholar 

  • Samren EB, van Duijn CM, Christiaens GC, Hofman A, Lindhout D (1999) Antiepileptic drug regimens and major congenital abnormalities in the offspring. Ann Neurol 46:739–746

    PubMed  CAS  Google Scholar 

  • Shen H-Y, Li T, Boison D (2009) A novel mouse model for sudden unexpected death in epilepsy (SUDEP): role of impaired adenosine clearance. Epilepsia 51:485–488, doi:10.1111/j.1528-1167.2009.02248.x

    Google Scholar 

  • Sperlagh B, Zsilla G, Baranyi M, Illes P, Vizi ES (2007) Purinergic modulation of glutamate release under ischemic-like conditions in the hippocampus. Neuroscience 149:99–111

    PubMed  CAS  Google Scholar 

  • Spina E, Pisani F, Perucca E (1996) Clinically significant pharmacokinetic drug interactions with carbamazepine. An update. Clin Pharmacokinet 31:198–214

    PubMed  CAS  Google Scholar 

  • Stern L, Dannon PN, Hirschmann S, Schriber S, Amytal D, Dolberg OT, Grunhaus L (1999) Aminophylline increases seizure length during electroconvulsive therapy. J ECT 15:252–257

    PubMed  CAS  Google Scholar 

  • Sugimoto T, Sugimoto M, Uchida I, Mashimo T, Okada S (2001) Inhibitory effect of theophylline on recombinant GABA(A) receptor. Neuroreport 12:489–493

    PubMed  CAS  Google Scholar 

  • Svenningsson P, Nomikos GG, Fredholm BB (1999) The stimulatory action and the development of tolerance to caffeine is associated with alterations in gene expression in specific brain regions. J Neurosci 19:4011–4022

    PubMed  CAS  Google Scholar 

  • Swiader MJ, Luszczki JJ, Wielosz M, Czuczwar SJ (2005) Effect of histamine receptor antagonists on aminophylline-induced seizures and lethality in mice. Pharmacol Rep 57:531–535

    PubMed  CAS  Google Scholar 

  • Szybala C, Pritchard EM, Wilz A, Kaplan DL, Boison D (2009) Antiepileptic effects of silk-polymer based adenosine release in kindled rats. Exp Neurol 219:126–135

    PubMed  CAS  Google Scholar 

  • Turski L, Ikonomidou C, Turski WA, Bortolotto ZA, Cavalheiro EA (1989) Review: cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse 3:154–171

    PubMed  CAS  Google Scholar 

  • Usachev Y, Shmigol A, Pronchuk N, Kostyuk P, Verkhratsky A (1993) Caffeine-induced calcium release from internal stores in cultured rat sensory neurons. Neuroscience 57:845–859

    PubMed  CAS  Google Scholar 

  • Van Dellen RG (1979) Clinical pharmacology. Series on pharmacology in practice. 4. Theophylline. Practical application of new knowledge. Mayo Clin Proc 54:733–745

    PubMed  Google Scholar 

  • Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85:201–279

    PubMed  CAS  Google Scholar 

  • Wu C, Wong T, Wu X, Sheppy E, Zhang L (2009) Adenosine as an endogenous regulating factor of hippocampal sharp waves. Hippocampus 19:205–220

    PubMed  CAS  Google Scholar 

  • Yoshikawa H (2007) First-line therapy for theophylline-associated seizures. Acta Neurol Scand 115:57–61

    PubMed  CAS  Google Scholar 

  • Young D, Dragunow M (1994) Status epilepticus may be caused by loss of adenosine anticonvulsant mechanisms. Neuroscience 58:245–261

    PubMed  CAS  Google Scholar 

  • Yu L, Coelho JE, Zhang X, Fu Y, Tillman A, Karaoz U, Fredholm BB, Weng Z, Chen JF (2009) Uncovering multiple molecular targets for caffeine using a drug target validation strategy combining A 2A receptor knockout mice with microarray profiling. Physiol Genomics 37:199–210

    PubMed  CAS  Google Scholar 

  • Zhi JG, Levy G (1990) Effect of chronic caffeine administration on theophylline concentrations required to produce seizures in rats. Proc Soc Exp Biol Med 193:210–213

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work of the author is supported by grants R01NS058780, R01NS061844, R01MH083973, R21NS057475-01, and R21NS057538-01 from the National Institutes of Health (NIH), from Citizens United in Research against Epilepsy (CURE) in collaboration with the Department of Defense (DoD), and from the Legacy Hospital Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Boison, D. (2011). Methylxanthines, Seizures, and Excitotoxicity. In: Methylxanthines. Handbook of Experimental Pharmacology, vol 200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13443-2_9

Download citation

Publish with us

Policies and ethics