Advertisement

Methylxanthines and Ryanodine Receptor Channels

  • Serge Guerreiro
  • Marc Marien
  • Patrick P. MichelEmail author
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 200)

Abstract

Methylxanthines of either natural or synthetic origin have a number of interesting pharmacological features. Proposed mechanisms of methylxanthine-induced pharmacological effects include competitive antagonism of G-coupled adenosine A1 and A2A receptors and inhibition of phosphodiesterases. A number of studies have indicated that methylxanthines also exert effects through alternative mechanisms, in particular via activation of sarcoplasmic reticulum or endoplasmic reticulum ryanodine receptor (RyR) channels. More specifically, RyR channel activation by methylxanthines was reported (1) to stimulate the process of excitation coupling in muscle cells, (2) to augment the excitability of neurons and thus their capacity to release neurotransmitters, and also (3) to improve their survival. Here, we address the mechanisms by which methylxanthines control RyR activation and we consider the pharmacological consequences of this activation, in muscle and neuronal cells.

Keywords

Calcium Methylxanthines Muscle cell contraction Neuroprotection Neurotransmitter release Ryanodine receptors 

Abbreviations

Cacyt2+

Cytoplasmic Ca2+

ER

Endoplasmic reticulum

RyR

Ryanodine receptor

SR

Sarcoplasmic reticulum

Notes

Acknowledgements

The work by the authors mentioned in this paper received support from Institut de Recherche Pierre Fabre. We gratefully acknowledge support from Institut National de la Santé et de la Recherche Médicale (INSERM) and Université Pierre et Marie Curie-Paris 6.

References

  1. Arnaud M (2010) Pharmacokinetics and metabolism of natural methylxanthines in animal and man. In: Fredholm BB (ed) Methylxanthines. Springer, HeidelbergGoogle Scholar
  2. Ascherio A, Zhang SM, Hernan MA, Kawachi I, Colditz GA, Speizer FE, Willett WC (2001) Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann Neurol 50:56–63PubMedCrossRefGoogle Scholar
  3. Ashihara H, Kato M, Crozier A (2010) Distribution, biosynthesis and catabolism of methylxanthines in plants. In: Fredholm BB (ed) Methylxanthines. Springer, HeidelbergGoogle Scholar
  4. Birkett DJ, Dahlqvist R, Miners JO, Lelo A, Billing B (1985) Comparison of theophylline and theobromine metabolism in man. Drug Metab Dispos 13:725–728PubMedGoogle Scholar
  5. Block BM, Barry SR, Faulkner JA (1992) Aminophylline increases submaximum power but not intrinsic velocity of shortening of frog muscle. J Appl Physiol 73:71–74PubMedGoogle Scholar
  6. Bruton JD, Lemmens R, Shi CL, Persson-Sjögren S, Westerblad H, Ahmed M, Pyne NJ, Frame M, Furman BL, Islam MS (2003) Ryanodine receptors of pancreatic β-cells mediate a distinct context-dependent signal for insulin secretion. FASEB J 17:301–303PubMedGoogle Scholar
  7. Buck E, Zimanyi I, Abramson JJ, Pessah IN (1992) Ryanodine stabilizes multiple conformational states of the skeletal muscle Ca2+ release channel. J Biol Chem 267:23560–23567PubMedGoogle Scholar
  8. Cavallaro RA, Filocamo L, Galuppi A, Galione A, Brufani M, Genazzani AA (1999) Potentiation of cADPR-induced Ca2+-release by methylxanthine analogues. J Med Chem 42:2527–2534PubMedCrossRefGoogle Scholar
  9. Chen BT, Moran KA, Avshalumov MV, Rice ME (2006) Limited regulation of somatodendritic dopamine release by voltage-sensitive Ca2+ channels contrasted with strong regulation of axonal dopamine release. J Neurochem 96:645–655PubMedCrossRefGoogle Scholar
  10. Connett RJ, Ugol LM, Hammack MJ, Hays ET (1983) Twitch potentiation and caffeine contractures in isolated rat soleus muscle. Comp Biochem Physiol C 74:349–354PubMedCrossRefGoogle Scholar
  11. Conway D, Sakai T (1960) Caffeine contracture. Proc Natl Acad Sci USA 46:897–903PubMedCrossRefGoogle Scholar
  12. Daly JW (2007) Caffeine analogs: biomedical impact. Cell Mol Life Sci 64:2153–2169PubMedCrossRefGoogle Scholar
  13. Dettbarn C, Palade P (1997) Ca2+ feedback on “quantal” Ca2+ release involving ryanodine receptors. Mol Pharmacol 52:1124–1130PubMedGoogle Scholar
  14. Douhou A, Troadec JD, Ruberg M, Raisman-Vozari R, Michel PP (2001) Survival promotion of mesencephalic dopaminergic neurons by depolarizing concentrations of K+ requires concurrent inactivation of NMDA or AMPA/kainate receptors. J Neurochem 78:163–174PubMedCrossRefGoogle Scholar
  15. Du GG, MacLennan DH (1999) Ca2+ inactivation sites are located in the COOH-terminal quarter of recombinant rabbit skeletal muscle Ca2+ release channels (ryanodine receptors). J Biol Chem 274:26120–26126PubMedCrossRefGoogle Scholar
  16. Du GG, Khanna VK, Guo X, MacLennan DH (2004) Central core disease mutations R4892W, I4897T and G4898E in the ryanodine receptor isoform 1 reduce the Ca2+ sensitivity and amplitude of Ca2+-dependent Ca2+ release. Biochem J 382(Pt 2):557–564PubMedGoogle Scholar
  17. Elbaz A, Moisan F (2008) Update in the epidemiology of Parkinson’s disease. Curr Opin Neurol 21:454–460PubMedCrossRefGoogle Scholar
  18. Endo M (1977) Calcium release from the sarcoplasmic reticulum. Physiol Rev 57:71–108PubMedGoogle Scholar
  19. Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol Cell Physiol 245:C1–C14Google Scholar
  20. Ferré S, Guix T, Sallés J, Badia A, Parra P, Jané F, Herrera-Marschitz M, Ungerstedt U, Casas M (1990) Paraxanthine displaces the binding of [3H]SCH 23390 from rat striatal membranes. Eur J Pharmacol 179:295–299PubMedCrossRefGoogle Scholar
  21. Fessenden JD, Feng W, Pessah IN, Allen PD (2006) Amino acid residues Gln4020 and Lys4021 of the ryanodine receptor type 1 are required for activation by 4-chloro-m-cresol. J Biol Chem 281:21022–21031PubMedCrossRefGoogle Scholar
  22. Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82:893–922PubMedGoogle Scholar
  23. Francis SH, Sekhar KR, Ke H, Corbin JD (2010) Inhibition of cyclic nucleotide phosphodiesterases by methylxanthines and related compounds. In: Fredholm BB (ed) Methylxanthines. Springer, HeidelbergGoogle Scholar
  24. Galante M, Marty A (2003) Presynaptic ryanodine-sensitive calcium stores contribute to evoked neurotransmitter release at the basket cell-Purkinje cell synapse. J Neurosci 23:11229–11234PubMedGoogle Scholar
  25. Galione A, Lee HC, Busa WB (1991) Ca2+-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science 253:1143–1146PubMedCrossRefGoogle Scholar
  26. Garaschuk O, Yaari Y, Konnerth A (1997) Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones. J Physiol 502:13–30PubMedCrossRefGoogle Scholar
  27. Guerreiro S, Toulorge D, Hirsch E, Marien M, Sokoloff P, Michel PP (2008) Paraxanthine, the primary metabolite of caffeine, provides protection against dopaminergic cell death via stimulation of ryanodine receptor channels. Mol Pharmacol 74:980–989PubMedCrossRefGoogle Scholar
  28. Hawke TJ, Allen DG, Lindinger MI (2000) Paraxanthine, a caffeine metabolite, dose dependently increases [Ca2+]i in skeletal muscle. J Appl Physiol 89:2312–2317PubMedGoogle Scholar
  29. Herrmann-Frank A, Lüttgau HC, Stephenson DG (1999) Caffeine and excitation-contraction coupling in skeletal muscle: a stimulating story. J Muscle Res Cell Motil 20:223–237PubMedCrossRefGoogle Scholar
  30. Hymel L, Inui M, Fleischer S, Schindler H (1988) Purified ryanodine receptor of skeletal muscle sarcoplasmic reticulum forms Ca2+-activated oligomeric Ca2+ channels in planar bilayers. Proc Natl Acad Sci USA 85:441–445PubMedCrossRefGoogle Scholar
  31. Islam MS, Leibiger I, Leibiger B, Rossi D, Sorrentino V, Ekström TJ, Westerblad H, Andrade FH, Berggren PO (1998) In situ activation of the type 2 ryanodine receptor in pancreatic beta cells requires cAMP-dependent phosphorylation. Proc Natl Acad Sci USA 95:6145–6150PubMedCrossRefGoogle Scholar
  32. Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264PubMedCrossRefGoogle Scholar
  33. Kano M, Garaschuk O, Verkhratsky A, Konnerth A (1995) Ryanodine receptor-mediated intracellular calcium release in rat cerebellar Purkinje neurones. J Physiol 487:1–16PubMedGoogle Scholar
  34. Kelly E, Bailey CP, Henderson G (2008) Agonist-selective mechanisms of GPCR desensitization. Br J Pharmacol 153(Suppl 1):S379–S388PubMedGoogle Scholar
  35. Kirino Y, Shimizu H (1982) Ca2+-induced Ca2+ release from fragmented sarcoplasmic reticulum: a comparison with skinned muscle fiber studies. J Biochem 92:1287–1296PubMedGoogle Scholar
  36. Kong H, Jones PP, Koop A, Zhang L, Duff HJ, Chen SR (2008) Caffeine induces Ca2+ release by reducing the threshold for luminal Ca2+ activation of the ryanodine receptor. Biochem J 414:441–452PubMedCrossRefGoogle Scholar
  37. Kramer ER, Aron L, Ramakers GM, Seitz S, Zhuang X, Beyer K, Smidt MP, Klein R (2007) Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol 5:e39PubMedCrossRefGoogle Scholar
  38. Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46:598–605PubMedCrossRefGoogle Scholar
  39. Lee HC (1993) Potentiation of calcium- and caffeine-induced calcium release by cyclic ADP-ribose. J Biol Chem 268:293–299PubMedGoogle Scholar
  40. Liu W, Meissner G (1997) Structure-activity relationship of xanthines and skeletal muscle ryanodine receptor/Ca2+ release channel. Pharmacology 54:135–143PubMedCrossRefGoogle Scholar
  41. Love S, Plaha P, Patel NK, Hotton GR, Brooks DJ, Gill SS (2005) Glial cell line-derived neurotrophic factor induces neuronal sprouting in human brain. Nat Med 11:703–704PubMedCrossRefGoogle Scholar
  42. Magkos F, Kavouras SA (2005) Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit Rev Food Sci Nutr 45:535–562PubMedCrossRefGoogle Scholar
  43. McGarry SJ, Williams AJ (1994) Adenosine discriminates between the caffeine and adenine nucleotide sites on the sheep cardiac sarcoplasmic reticulum calcium-release channel. J Membr Biol 137:169–177PubMedGoogle Scholar
  44. McPherson PS, Kim YK, Valdivia H, Knudson CM, Takekura H, Franzini-Armstrong C, Coronado R, Campbell KP (1991) The brain ryanodine receptor: a caffeine-sensitive calcium release channel. Neuron 7:17–25PubMedCrossRefGoogle Scholar
  45. Meissner G, Henderson JS (1987) Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin. J Biol Chem 262:3065–3073PubMedGoogle Scholar
  46. Meissner G, Rousseau E, Lai FA, Liu QY, Anderson KA (1988) Biochemical characterization of the Ca2+ release channel of skeletal and cardiac sarcoplasmic reticulum. Mol Cell Biochem 82:59–65PubMedCrossRefGoogle Scholar
  47. Michel PP, Alvarez-Fischer D, Guerreiro S, Hild A, Hartmann A, Hirsch EC (2007) Role of activity-dependent mechanisms in the control of dopaminergic neuron survival. J Neurochem 101:289–297PubMedCrossRefGoogle Scholar
  48. Moutin MJ, Dupont Y (1988) Rapid filtration studies of Ca2+-induced Ca2+ release from skeletal sarcoplasmic reticulum. Role of monovalent ions. J Biol Chem 263:4228–4235PubMedGoogle Scholar
  49. Näbauer M, Callewaert G, Cleemann L, Morad M (1989) Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science 246:1640Google Scholar
  50. Patel JC, Witkovsky P, Avshalumov MV, Rice ME (2009) Mobilization of calcium from intracellular stores facilitates somatodendritic dopamine release. J Neurosci 29:6568–6579PubMedCrossRefGoogle Scholar
  51. Pessah IN, Stambuk RA, Casida JE (1987) Ca2+-activated ryanodine binding: mechanisms of sensitivity and intensity modulation by Mg2+, caffeine, and adenine nucleotides. Mol Pharmacol 31:232–238PubMedGoogle Scholar
  52. Ritter M, Menon S, Zhao L, Xu S, Shelby J, Barry WH (2001) Functional importance and caffeine sensitivity of ryanodine receptors in primary lymphocytes. Int Immunopharmacol 1:339–347PubMedCrossRefGoogle Scholar
  53. Rousseau E, Ladine J, Liu QY, Meissner G (1988) Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by caffeine and related compounds. Arch Biochem Biophys 267:75–86PubMedCrossRefGoogle Scholar
  54. Sääksjärvi K, Knekt P, Rissanen H, Laaksonen MA, Reunanen A, Männistö S (2008) Prospective study of coffee consumption and risk of Parkinson’s disease. Eur J Clin Nutr 62:908–915PubMedCrossRefGoogle Scholar
  55. Salthun-Lassalle B, Hirsch EC, Wolfart J, Ruberg M, Michel PP (2004) Rescue of mesencephalic dopaminergic neurons in culture by low-level stimulation of voltage-gated sodium channels. J Neurosci 24:5922–5930PubMedCrossRefGoogle Scholar
  56. Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M, Kawaguchi T, Tsunoda T, Watanabe M, Takeda A, Tomiyama H, Nakashima K, Hasegawa K, Obata F, Yoshikawa T, Kawakami H, Sakoda S, Yamamoto M, Hattori N, Murata M, Nakamura Y, Toda T (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat Genet 41:1303–1307Google Scholar
  57. Sharma G, Vijayaraghavan S (2003) Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron 38:929–939PubMedCrossRefGoogle Scholar
  58. Sitsapesan R, Williams AJ (1990) Mechanisms of caffeine activation of single calcium-release channels of sheep cardiac sarcoplasmic reticulum. J Physiol 423:425–439PubMedGoogle Scholar
  59. Sitsapesan R, McGarry SJ, Williams AJ (1995) Cyclic ADP-ribose, the ryanodine receptor and Ca2+ release. Trends Pharmacol Sci 16:386–391PubMedCrossRefGoogle Scholar
  60. Smith AB, Cunnane TC (1996) Ryanodine-sensitive calcium stores involved in neurotransmitter release from sympathetic nerve terminals of the guinea-pig. J Physiol 497(Pt 3):657–664PubMedGoogle Scholar
  61. Sutko JL, Airey JA, Welch W, Ruest L (1997) The pharmacology of ryanodine and related compounds. Pharmacol Rev 49:53–98PubMedGoogle Scholar
  62. Trueta C, Sánchez-Armass S, Morales MA, De-Miguel FF (2004) Calcium-induced calcium release contributes to somatic secretion of serotonin in leech Retzius neurons. J Neurobiol 61:309–316PubMedCrossRefGoogle Scholar
  63. Usachev Y, Verkhratsky A (1995) IBMX induces calcium release from intracellular stores in rat sensory neurones. Cell Calcium 17:197–206PubMedCrossRefGoogle Scholar
  64. Usachev Y, Shmigol A, Pronchuk N, Kostyuk P, Verkhratsky A (1993) Caffeine-induced calcium release from internal stores in cultured rat sensory neurons. Neuroscience 57:845–859PubMedCrossRefGoogle Scholar
  65. Veley VH, Waller AD (1910) On the comparative toxicity of theobromine and caffeine, as measured by their direct effect upon the contractility of isolated muscle. Proc R Soc Lond B Biol Sci 82:568–574CrossRefGoogle Scholar
  66. Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85:201–279PubMedCrossRefGoogle Scholar
  67. Walz B, Baumann O, Zimmermann B, Ciriacy-Wantrup EV (1995) Caffeine- and ryanodine-sensitive Ca2+-induced Ca2+ release from the endoplasmic reticulum in honeybee photoreceptors. J Gen Physiol 105:537–567PubMedCrossRefGoogle Scholar
  68. Wang R, Bolstad J, Kong H, Zhang L, Brown C, Chen SR (2004) The predicted TM10 transmembrane sequence of the cardiac Ca2+ release channel (ryanodine receptor) is crucial for channel activation and gating. J Biol Chem 279:3635–42PubMedCrossRefGoogle Scholar
  69. Wang SJ (2007) Caffeine facilitation of glutamate release from rat cerebral cortex nerve terminals (synaptosomes) through activation protein kinase C pathway: an interaction with presynaptic adenosine A1 receptors. Synapse 61:401–411PubMedCrossRefGoogle Scholar
  70. Wyskovsky W (1994) Caffeine-induced calcium oscillations in heavy-sarcoplasmic-reticulum vesicles from rabbit skeletal muscle. Eur J Biochem 221:317–325PubMedCrossRefGoogle Scholar
  71. Xu L, Meissner G (1988) Regulation of cardiac muscle Ca2+ release channel by sarcoplasmic reticulum lumenal Ca2+. Biophys J 75:2302–2312CrossRefGoogle Scholar
  72. Xu K, Xu YH, Chen JF, Schwarzschild MA (2010) Neuroprotection by caffeine: time course and role of its metabolites in the MPTP model of Parkinson's disease. Neuroscience 167:475–478Google Scholar
  73. Xu K, Xu Y, Brown-Jermyn D, Chen JF, Ascherio A, Dluzen DE, Schwarzschild MA (2006) Estrogen prevents neuroprotection by caffeine in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Neurosci 26:535–541PubMedCrossRefGoogle Scholar
  74. Zalk R, Lehnart SE, Marks AR (2007) Modulation of the ryanodine receptor and intracellular calcium. Annu Rev Biochem 76:367–385PubMedCrossRefGoogle Scholar
  75. Zucchi R, Ronca-Testoni S (1997) The sarcoplasmic reticulum Ca2+ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states. Pharmacol Rev 49:1–51PubMedGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  • Serge Guerreiro
    • 1
    • 2
    • 3
  • Marc Marien
    • 4
  • Patrick P. Michel
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Centre de Recherche de l’Institut du Cerveau et de la Moelle Epinière, UMR-S975Université Pierre et Marie Curie-Paris 6ParisFrance
  2. 2.U-975Institut National de la Santé et de la Recherche MédicaleParisFrance
  3. 3.UMR 7225Centre National de la Recherche ScientifiqueParisFrance
  4. 4.Institut de Recherche Pierre FabreCastresFrance

Personalised recommendations