Skip to main content

Methylxanthines and Drug Dependence: A Focus on Interactions with Substances of Abuse

  • Chapter
  • First Online:
Methylxanthines

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 200))

Abstract

This chapter examines the psychostimulant actions of methylxanthines, with a focus on the consequences of their excessive use. Consumption of methylxanthines is pervasive and their use is often associated with that of substances known to produce dependence and to have abuse potential. Therefore, the consequences of this combined use are taken into consideration in order to evaluate whether, and to what extent, methylxanthines could influence dependence on or abuse of other centrally active substances, leading to either amplification or attenuation of their effects. Since the methylxanthine that mostly influences mental processes and readily induces psychostimulation is caffeine, this review mainly focuses on caffeine as a prototype of methylxanthine-produced dependence, examining, at the same time, the risks related to caffeine use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CPP:

Conditioned place preference

D2High:

High-affinity D2

DARPP-32:

Dopamine- and cyclic-AMPregulated 32-kDa phosphoprotein

DSM IV:

Diagnostic and Statistical Manual of Mental Disorders, fourth edition

IEGs:

Immediate early genes

NGFI-A:

Nerve growth factor I-A

NMDA:

N-Methyl-d-aspartate

References

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington

    Google Scholar 

  • Barik J, Wonnacott S (2009) Molecular and cellular mechanisms of action of nicotine in the CNS. Handb Exp Pharmacol 192:173–207

    PubMed  CAS  Google Scholar 

  • Barwick VS, Dar MS (1998) Adenosinergic modulation of ethanol-induced motor incoordination in the rat motor cortex. Prog Neuropsychopharmacol Biol Psychiatry 22:587–607

    PubMed  CAS  Google Scholar 

  • Bedingfield JB, King DA, Holloway FA (1998) Cocaine and caffeine: conditioned place preference, locomotor activity, and additivity. Pharmacol Biochem Behav 61:291–296

    PubMed  CAS  Google Scholar 

  • Benowitz NL, Hall SM, Modin G (1989) Persistent increase in caffeine concentrations in people who stop smoking. BMJ 298:1075–1076

    PubMed  CAS  Google Scholar 

  • Benton D (2004) The biology and psychology of chocolate craving. In: Nehlig A (ed) Coffee, tea chocolate and the brain. CRC, Boca Raton

    Google Scholar 

  • Bernstein GA, Carroll ME, Thuras PD et al (2002) Caffeine dependence in teenagers. Drug Alcohol Depend 66:1–6

    PubMed  Google Scholar 

  • Bespalov A, Dravolina O, Belozertseva I et al (2006) Lowered brain stimulation reward thresholds in rats treated with a combination of caffeine and N-methyl-D-aspartate but not alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate or metabotropic glutamate receptor-5 receptor antagonists. Behav Pharmacol 17:295–302

    PubMed  CAS  Google Scholar 

  • Blank MD, Kleykamp BA, Jennings JM et al (2007) Caffeine’s influence on nicotine’s effects in nonsmokers. Am J Health Behav 31:473–483

    PubMed  Google Scholar 

  • Boeck CR, Marques VB, Valvassori SS et al (2009) Early long-term exposure with caffeine induces cross-sensitization to methylphenidate with involvement of DARPP-32 in adulthood of rats. Neurochem Int 55:318–322

    PubMed  CAS  Google Scholar 

  • Briand LA, Flagel SB, Seeman P et al (2008) Cocaine self-administration produces a persistent increase in dopamine D2 High receptors. Eur Neuropsychopharmacol 18:551–556

    PubMed  CAS  Google Scholar 

  • Brice CF, Smith AP (2002) Factors associated with caffeine consumption. Int J Food Sci Nutr 53:55–64

    PubMed  Google Scholar 

  • Budney AJ, Higgins ST, Hughes JR et al (1993) Nicotine and caffeine use in cocaine-dependent individuals. J Subst Abuse 5:117–130

    PubMed  CAS  Google Scholar 

  • Carney JM (1982) Effects of caffeine, theophylline and theobromine on scheduled controlled responding in rats. Br J Pharmacol 75:451–454

    PubMed  CAS  Google Scholar 

  • Carney JM, Holloway FA, Modrow HE (1985) Discriminative stimulus properties of methylxanthines and their metabolites in rats. Life Sci 36:913–920

    PubMed  CAS  Google Scholar 

  • Carriba P, Ortiz O, Patkar K et al (2007) Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology 32:2249–2259

    PubMed  CAS  Google Scholar 

  • Cauli O, Pinna A, Valentini V et al (2003) Subchronic caffeine exposure induces sensitization to caffeine and cross-sensitization to amphetamine ipsilateral turning behavior independent from dopamine release. Neuropsychopharmacology 28:1752–1759

    PubMed  CAS  Google Scholar 

  • Celik E, Uzbay IT, Karakas S (2006) Caffeine and amphetamine produce cross-sensitization to nicotine-induced locomotor activity in mice. Prog Neuropsychopharmacol Biol Psychiatry 30:50–55

    PubMed  CAS  Google Scholar 

  • Chan MH, Chen HH (2003) Toluene exposure increases aminophylline-induced seizure susceptibility in mice. Toxicol Appl Pharmacol 193:303–308

    PubMed  CAS  Google Scholar 

  • Cheng JY, Chan MF, Chan TW et al (2006) Impurity profiling of ecstasy tablets seized in Hong Kong by gas chromatography-mass spectrometry. Forensic Sci Int 162:87–94

    PubMed  CAS  Google Scholar 

  • Cohen C, Pickworth WB, Bunker EB et al (1994) Caffeine antagonizes EEG effects of tobacco withdrawal. Pharmacol Biochem Behav 47:919–936

    PubMed  CAS  Google Scholar 

  • Comer SD, Carroll ME (1996) Oral caffeine pretreatment produced modest increases in smoked cocaine self-administration in rhesus monkeys. Psychopharmacology 126:281–285

    PubMed  CAS  Google Scholar 

  • Comer SD, Haney M, Foltin RW et al (1997) Effects of caffeine withdrawal on humans living in a residential laboratory. Exp Clin Psychopharmacol 5:399–403

    PubMed  CAS  Google Scholar 

  • Connole L, Harkin A, Maginn M (2004) Adenosine A1 receptor blockade mimics caffeine's attenuation of ethanol-induced motor incoordination. Basic Clin Pharmacol Toxicol 95:299–304

    PubMed  CAS  Google Scholar 

  • Cooper M, Safran M, Eberhardt M (2004) Caffeine consumption among adults on benzodiazepine therapy: United States 1988–1994. Psychol Rep 95:183–191

    PubMed  Google Scholar 

  • Couturier EG, Laman DM, van Duijn MA et al (1997) Influence of caffeine and caffeine withdrawal on headache and cerebral blood flow velocities. Cephalalgia 17:188–190

    PubMed  CAS  Google Scholar 

  • Cysneiros RM, Farkas D, Harmatz JS et al (2007) Pharmacokinetic and pharmacodynamic interactions between zolpidem and caffeine. Clin Pharmacol Ther 82:54–62

    PubMed  CAS  Google Scholar 

  • Dallard I, Cathebras P, Sauron C et al (2001) Is cocoa a psychotropic drug? Psychopathologic study of a population of subjects self-identified as chocolate addicts. Encephale 27:181–186

    PubMed  CAS  Google Scholar 

  • Daly JW, Fredholm BB (1998) Caffeine–an atypical drug of dependence. Drug Alcohol Depend 51:199–206

    PubMed  CAS  Google Scholar 

  • Dar MS, Jones M, Close G et al (1987) Behavioral interactions of ethanol and methylxanthines. Psychopharmacology 91:1–4

    PubMed  CAS  Google Scholar 

  • Delle Donne KT, Sonsalla PK (1994) Protection against methamphetamine-induced neurotoxicity to neostriatal dopaminergic neurons by adenosine receptor activation. J Pharmacol Exp Ther 271:1320–1326

    PubMed  CAS  Google Scholar 

  • De Luca MA, Bassareo V, Bauer A et al (2007) Caffeine and accumbens shell dopamine. J Neurochem 103:157–163

    PubMed  Google Scholar 

  • de Oliveira RV, Dall'Igna OP, Tort AB et al (2005) Effect of subchronic caffeine treatment on MK-801-induced changes in locomotion, cognition and ataxia in mice. Behav Pharmacol 16:79–84

    PubMed  Google Scholar 

  • Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75–114

    PubMed  Google Scholar 

  • Drake CL, Roehrs T, Turner L et al (2003) Caffeine reversal of ethanol effects on the multiple sleep latency test, memory, and psychomotor performance. Neuropsychopharmacology 28:371–378

    PubMed  CAS  Google Scholar 

  • Dupont RL, Coleman JJ, Bucher RH et al (2008) Characteristics and motives of college students who engage in nonmedical use of methylphenidate. Am J Addict 17:167–171

    PubMed  Google Scholar 

  • El Yacoubi M, Ledent C, Parmentier M et al (2003) Caffeine reduces hypnotic effects of alcohol through adenosine A2A receptor blockade. Neuropharmacology 45:977–985

    PubMed  CAS  Google Scholar 

  • Enríquez-Castillo A, Alamilla J, Barral J et al (2008) Differential effects of caffeine on the antidepressant-like effect of amitriptyline in female rat subpopulations with low and high immobility in the forced swimming test. Physiol Behav 94:501–509

    PubMed  Google Scholar 

  • Ferré S (2008) An update on the mechanisms of the psychostimulant effects of caffeine. J Neurochem 105:1067–1079

    PubMed  Google Scholar 

  • Ferré S, Fredholm BB, Morelli M et al (1997) Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 20:482–487

    PubMed  Google Scholar 

  • Fillmore MT (2003) Alcohol tolerance in humans is enhanced by prior caffeine antagonism of alcohol-induced impairment. Exp Clin Psychopharmacol 11:9–17

    PubMed  Google Scholar 

  • Finn IB, Holtzman SG (1988) Tolerance and cross-tolerance to theophylline-induced stimulation of locomotor activity in rats. Life Sci 42:2475–2482

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Bättig K, Holmén J et al (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    PubMed  CAS  Google Scholar 

  • Fucci N, De Giovanni N (1998) Adulterants encountered in the illicit cocaine market. Forensic Sci Int 95:247–252

    PubMed  CAS  Google Scholar 

  • Garrett BE, Griffiths RR (1997) The role of dopamine in the behavioral effects of caffeine in animals and humans. Pharmacol Biochem Behav 57:533–541

    PubMed  CAS  Google Scholar 

  • Garrett BE, Griffiths RR (2001) Intravenous nicotine and caffeine: subjective and physiological effects in cocaine abusers. J Pharmacol Exp Ther 296:486–494

    PubMed  CAS  Google Scholar 

  • Gasior M, Jaszyna M, Munzar P et al (2002) Caffeine potentiates the discriminative-stimulus effects of nicotine in rats. Psychopharmacology 162:385–395

    PubMed  CAS  Google Scholar 

  • Gasior M, Shoaib M, Yasar S et al (1999) Acquisition of nicotine discrimination and discriminative stimulus effects of nicotine in rats chronically exposed to caffeine. J Pharmacol Exp Ther 288:1053–1073

    PubMed  CAS  Google Scholar 

  • George SR, Watanabe M, Di Paolo T et al (1985) The functional state of the dopamine receptor in the anterior pituitary is in the high affinity form. Endocrinology 117:690–697

    PubMed  CAS  Google Scholar 

  • Georgiev V, Johansson B, Fredholm BB (1993) Long-term caffeine treatment leads to a decreased susceptibility to NMDA-induced clonic seizures in mice without changes in adenosine A1 receptor number. Brain Res 612:271–277

    PubMed  CAS  Google Scholar 

  • Gilliland K, Bullock W (1984) Caffeine: a potential drug of abuse. Adv Alcohol Subst Abuse 3:53–73

    CAS  Google Scholar 

  • Grattan-Miscio KE, Vogel-Sprott M (2005) Alcohol, intentional control, and inappropriate behavior: regulation by caffeine or an incentive. Exp Clin Psychopharmacol 13:48–55

    PubMed  CAS  Google Scholar 

  • Green TA, Schenk S (2002) Dopaminergic mechanism for caffeine-produced cocaine seeking in rats. Neuropsychopharmacology 26:422–430

    PubMed  CAS  Google Scholar 

  • Griffiths RR, Evans SM, Heishman SJ et al (1990) Low-dose caffeine physical dependence in humans. J Pharmacol Exp Ther 255:1123–1132

    PubMed  CAS  Google Scholar 

  • Griffiths RR, Mumford GK (1995) Caffeine: a drug of abuse? In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven, New York

    Google Scholar 

  • Gurpegui M, Jurado D, Luna JD et al (2007) Personality traits associated with caffeine intake and smoking. Prog Neuropsychopharmacol Biol Psychiatry 31:997–1005

    PubMed  CAS  Google Scholar 

  • Harland RD, Gauvin DV, Michaelis RC et al (1989) Behavioral interaction between cocaine and caffeine: a drug discrimination analysis in rats. Pharmacol Biochem Behav 32:1017–1023

    PubMed  CAS  Google Scholar 

  • Heishman SJ, Henningfield JE (1992) Stimulus functions of caffeine in humans: relation to dependence potential. Neurosci Biobehav Rev 16:273–287

    PubMed  CAS  Google Scholar 

  • Holtzman SG (1986) Discriminative stimulus properties of caffeine in the rat: noradrenergic mediation. J Pharmacol Exp Ther 239:706–714

    PubMed  CAS  Google Scholar 

  • Holtzman SG (1996) Discriminative effects of CGS 15943, a competitive adenosine receptor antagonist, in monkeys: comparison to methylxanthines. J Pharmacol Exp Ther 277:739–746

    PubMed  CAS  Google Scholar 

  • Horger BA, Wellman PJ, Morien A et al (1991) Caffeine exposure sensitizes rats to the reinforcing effects of cocaine. Neuroreport 2:53–56

    PubMed  CAS  Google Scholar 

  • Hsu CW, Chen CY, Wang CS et al (2009a) Caffeine and a selective adenosine A2A receptor antagonist induce reward and sensitization behavior associated with increased phospho-Thr75-DARPP-32 in mice. Psychopharmacology 204:313–325

    PubMed  CAS  Google Scholar 

  • Hsu HR, Mei YY, Wu CY et al (2009b) Behavioural and toxic interaction profile of ketamine in combination with caffeine. Basic Clin Pharmacol Toxicol 104:379–383

    PubMed  CAS  Google Scholar 

  • Istvan J, Matarazzo JD (1984) Tobacco, alcohol, and caffeine use: a review of their interrelationships. Psychol Bull 95:301–326

    PubMed  CAS  Google Scholar 

  • Jain R, Holtzman SG (2005) Caffeine induces differential cross tolerance to the amphetamine-like discriminative stimulus effects of dopaminergic agonists. Brain Res Bull 65:415–421

    PubMed  CAS  Google Scholar 

  • Jaszyna M, Gasior M, Shoaib M et al (1998) Behavioral effects of nicotine, amphetamine and cocaine under a fixed-interval schedule of food reinforcement in rats chronically exposed to caffeine. Psychopharmacology 140:257–271

    PubMed  CAS  Google Scholar 

  • Jones HE, Griffiths RR (2003) Oral caffeine maintenance potentiates the reinforcing and stimulant subjective effects of intravenous nicotine in cigarette smokers. Psychopharmacology 165:280–290

    PubMed  CAS  Google Scholar 

  • Kaplan GB, Greenblatt DJ, Kent MA et al (1993) Caffeine treatment and withdrawal in mice: relationships between dosage, concentrations, locomotor activity and A1 adenosine receptor binding. J Pharmacol Exp Ther 266:1563–1572

    PubMed  CAS  Google Scholar 

  • Khalili M, Semnanian S, Fathollahi Y (2001) Caffeine increases paragigantocellularis neuronal firing rate and induces withdrawal signs in morphine-dependent rats. Eur J Pharmacol 412:239–245

    PubMed  CAS  Google Scholar 

  • Kidney J, Dominguez M, Taylor PM et al (1995) Immunomodulation by theophylline in asthma. Demonstration by withdrawal of therapy. Am J Respir Crit Care Med 151:1907–1914

    PubMed  CAS  Google Scholar 

  • Kozlowski LT, Henningfield JE, Keenan RM et al (1993) Patterns of alcohol, cigarette, and caffeine and other drug use in two drug abusing populations. J Subst Abuse Treat 10:171–179

    PubMed  CAS  Google Scholar 

  • Kunin D, Gaskin S, Rogan F et al (2000) Caffeine promotes ethanol drinking in rats. Examination using a limited-access free choice paradigm. Alcohol 21:271–277

    PubMed  CAS  Google Scholar 

  • Kuribara H (1995) Caffeine enhances acute stimulant effect of morphine but inhibits morphine sensitization when assessed by ambulation of mice. Prog Neuropsychopharmacol Biol Psychiatry 19:313–321

    CAS  Google Scholar 

  • Kuribara H, Tadokoro S (1992) Caffeine does not effectively ameliorate, but rather may worsen the ethanol intoxication when assessed by discrete avoidance in mice. Jpn J Pharmacol 59:393–398

    PubMed  CAS  Google Scholar 

  • Kuzmin A, Johansson B, Semenova S et al (2000) Differences in the effect of chronic and acute caffeine on self-administration of cocaine in mice. Eur J Neurosci 12:3026–3032

    PubMed  CAS  Google Scholar 

  • Lambrecht GL, Malbrain ML, Chew SL et al (1993) Intranasal caffeine and amphetamine causing stroke. Acta Neurol Belg 93:146–149

    PubMed  CAS  Google Scholar 

  • Lau CE, Falk JL (1995) Dose-dependent surmountability of locomotor activity in caffeine tolerance. Pharmacol Biochem Behav 52:139–143

    PubMed  CAS  Google Scholar 

  • Lau CE, Wang J (1996) Alprazolam, caffeine and their interaction: relating DRL performance to pharmacokinetics. Psychopharmacology 126:115–124

    PubMed  CAS  Google Scholar 

  • Lau CE, Wang Y, Falk JL (1997) Differential reinforcement of low rate performance, pharmacokinetics and pharmacokinetic-pharmacodynamic modeling: independent interaction of alprazolam and caffeine. J Pharmacol Exp Ther 281:1013–1029

    PubMed  CAS  Google Scholar 

  • Lekka NP, Paschalis C, Beratis S (1997) Nicotine, caffeine and alcohol use in high- and low-dose benzodiazepine users. Drug Alcohol Depend 45:207–212

    PubMed  CAS  Google Scholar 

  • Leri F, Bruneau J, Stewart J (2003) Understanding polydrug use: review of heroin and cocaine co-use. Addiction 98:7–22

    PubMed  Google Scholar 

  • Licata SC, Rowlett JK (2008) Abuse and dependence liability of benzodiazepine-type drugs: GABA(A) receptor modulation and beyond. Pharmacol Biochem Behav 90:74–89

    PubMed  CAS  Google Scholar 

  • Liguori A, Hughes JR, Goldberg K et al (1997) Subjective effects of oral caffeine in formerly cocaine-dependent humans. Drug Alcohol Depend 49:17–24

    PubMed  CAS  Google Scholar 

  • Liguori A, Robinson JH (2001) Caffeine antagonism of alcohol-induced driving impairment. Drug Alcohol Depend 63:123–129

    PubMed  CAS  Google Scholar 

  • Lindskog M, Svenningsson P, Pozzi L et al (2002) Involvement of DARPP-32 phosphorylation in the stimulant action of caffeine. Nature 418:774–778

    PubMed  CAS  Google Scholar 

  • Maccioni P, Pes D, Carai MA et al (2008) Suppression by the cannabinoid CB1 receptor antagonist, rimonabant, of the reinforcing and motivational properties of a chocolate-flavoured beverage in rats. Behav Pharmacol 19:197–209

    PubMed  CAS  Google Scholar 

  • Marczinski CA, Fillmore MT (2006) Clubgoers and their trendy cocktails: implications of mixing caffeine into alcohol on information processing and subjective reports of intoxication. Exp Clin Psychopharmacol 14:450–458

    PubMed  CAS  Google Scholar 

  • Martín I, López-Vílchez MA, Mur A et al (2007) Neonatal withdrawal syndrome after chronic maternal drinking of mate. Ther Drug Monit 29:127–129

    PubMed  Google Scholar 

  • McCabe SE, Knight JR, Teter CJ (2005) Non-medical use of prescription stimulants among US college students: prevalence and correlates from a national survey. Addiction 100:96–106

    PubMed  Google Scholar 

  • McCormick PN, Kapur S, Seeman P et al (2008) Dopamine D2 receptor radiotracers [(11)C](+)-PHNO and [(3)H]raclopride are indistinguishably inhibited by D2 agonists and antagonists ex vivo. Nucl Med Biol 35:11–17

    PubMed  CAS  Google Scholar 

  • McGowan JD, Altman RE, Kanto WP (1988) Neonatal withdrawal symptoms after chronic maternal ingestion of caffeine. South Med J 81:1092–1094

    PubMed  CAS  Google Scholar 

  • McNamara R, Kerans A, O'Neill B et al (2006) Caffeine promotes hyperthermia and serotonergic loss following co-administration of the substituted amphetamines, MDMA (“Ecstasy”) and MDA (“Love”). Neuropharmacology 50:69–80

    PubMed  CAS  Google Scholar 

  • Miller KE (2008) Energy drinks, race, and problem behaviors among college students. J Adolesc Health 43:490–497

    PubMed  Google Scholar 

  • Modrow HE, Holloway FA, Carney JM (1981) Caffeine discrimination in the rat. Pharmacol Biochem Behav 14:683–688

    PubMed  CAS  Google Scholar 

  • Mumford GK, Neill DB, Holtzman SG (1988) Caffeine elevates reinforcement threshold for electrical brain stimulation: tolerance and withdrawal changes. Brain Res 459:163–167

    PubMed  CAS  Google Scholar 

  • Nehlig A (1999) Are we dependent upon coffee and caffeine? A review on human and animal data. Neurosci Biobehav Rev 23:563–576

    PubMed  CAS  Google Scholar 

  • Nehlig A (2004) Dependence upon coffee and caffeine: an update. In: Nehlig A (ed) Coffee, tea chocolate and the brain. CRC, Boca Raton

    Google Scholar 

  • Nehlig A, Boyet S (2000) Dose-response study of caffeine effects on cerebral functional activity with a specific focus on dependence. Brain Res 858:71–77

    PubMed  CAS  Google Scholar 

  • Nikodijević O, Jacobson KA, Daly JW (1993) Locomotor activity in mice during chronic treatment with caffeine and withdrawal. Pharmacol Biochem Behav 44:199–216

    PubMed  Google Scholar 

  • O'Brien MC, McCoy TP, Rhodes SD et al (2008) Caffeinated cocktails: energy drink consumption, high-risk drinking, and alcohol-related consequences among college students. Acad Emerg Med 15:453–460

    PubMed  Google Scholar 

  • Oliveto AH, Bickel WK, Hughes JR et al (1993) Pharmacological specificity of the caffeine discriminative stimulus in humans: effects of theophylline, methylphenidate and buspirone. Behav Pharmacol 4:237–246

    PubMed  CAS  Google Scholar 

  • Oliveto AH, McCance-Katz E, Singha A et al (1998) Effects of d-amphetamine and caffeine in humans under a cocaine discrimination procedure. Behav Pharmacol 9:207–217

    PubMed  CAS  Google Scholar 

  • Perkins KA, Fonte C, Ashcom J et al (2001) Subjective responses to nicotine in smokers may be associated with responses to caffeine and to alcohol. Exp Clin Psychopharmacol 9:91–100

    PubMed  CAS  Google Scholar 

  • Perkins KA, Fonte C, Stolinski A et al (2005) The influence of caffeine on nicotine’s discriminative stimulus, subjective, and reinforcing effects. Exp Clin Psychopharmacol 13:275–281

    PubMed  CAS  Google Scholar 

  • Potthoff AD, Ellison G, Nelson L (1983) Ethanol intake increases during continuous administration of amphetamine and nicotine, but not several other drugs. Pharmacol Biochem Behav 18:489–493

    PubMed  CAS  Google Scholar 

  • Powell KR, Holtzman SG (1998) Lack of NMDA receptor involvement in caffeine-induced locomotor stimulation and tolerance in rats. Pharmacol Biochem Behav 59:433–438

    PubMed  CAS  Google Scholar 

  • Quarta D, Borycz J, Solinas M et al (2004) Adenosine receptor-mediated modulation of dopamine release in the nucleus accumbens depends on glutamate neurotransmission and N-methyl-d-aspartate receptor stimulation. J Neurochem 91:873–880

    PubMed  CAS  Google Scholar 

  • Ribeiro JA, Sebastião AM, de Mendonça A (2002) Adenosine receptors in the nervous system: pathophysiological implications. Prog Neurobiol 68:377–392

    PubMed  CAS  Google Scholar 

  • Roache JD, Griffiths RR (1987) Interactions of diazepam and caffeine: behavioral and subjective dose effects in humans. Pharmacol Biochem Behav 26:801–812

    PubMed  CAS  Google Scholar 

  • Rossi S, De Chiara V, Musella A et al (2009) Caffeine drinking potentiates cannabinoid transmission in the striatum: interaction with stress effects. Neuropharmacology 56:590–597

    PubMed  CAS  Google Scholar 

  • Rush CR, Sullivan JT, Griffiths RR (1995) Intravenous caffeine in stimulant drug abusers: subjective reports and physiological effects. J Pharmacol Exp Ther 273:351–358

    PubMed  CAS  Google Scholar 

  • Sahraei H, Barzegari AA, Shams J et al (2006) Theophylline inhibits tolerance and sensitization induced by morphine: a conditioned place preference paradigm study in female mice. Behav Pharmacol 17:621–628

    PubMed  CAS  Google Scholar 

  • Sahraei H, Motamedi F, Khoshbaten A et al (1999) Adenosine A(2) receptors inhibit morphine self-administration in rats. Eur J Pharmacol 383:107–113

    PubMed  CAS  Google Scholar 

  • Schenk S, Horger B, Snow S (1990) Caffeine preexposure sensitizes rats to the motor activating effects of cocaine. Behav Pharmacol 1:447–451

    PubMed  Google Scholar 

  • Schuh KJ, Griffiths RR (1997) Caffeine reinforcement: the role of withdrawal. Psychopharmacology 130:320–326

    PubMed  CAS  Google Scholar 

  • Seeman P (2009) Dopamine D2High receptors measured ex vivo are elevated in amphetamine-sensitized animals. Synapse 63:186–192

    PubMed  CAS  Google Scholar 

  • Shoaib M, Swanner LS, Yasar S et al (1999) Chronic caffeine exposure potentiates nicotine self-administration in rats. Psychopharmacology 142:327–333

    PubMed  CAS  Google Scholar 

  • Simola N, Morelli M, Seeman P (2008) Increase of dopamine D2(High) receptors in the striatum of rats sensitized to caffeine motor effects. Synapse 62:394–397

    PubMed  CAS  Google Scholar 

  • Smit HJ, Gaffan EA, Rogers PJ (2004) Methylxanthines are the psycho-pharmacologically active constituents of chocolate. Psychopharmacology 176:412–419

    PubMed  CAS  Google Scholar 

  • Sobel BF, Sigmon SC, Griffiths RR (2004) Transdermal nicotine maintenance attenuates the subjective and reinforcing effects of intravenous nicotine, but not cocaine or caffeine, in cigarette-smoking stimulant abusers. Neuropsychopharmacology 29:991–1003

    PubMed  CAS  Google Scholar 

  • Soria G, Castañé A, Berrendero F et al (2004) Adenosine A2A receptors are involved in physical dependence and place conditioning induced by THC. Eur J Neurosci 20:2203–2213

    PubMed  Google Scholar 

  • Spealman RD, Barrett-Larimore RL, Rowlett JK et al (1999) Pharmacological and environmental determinants of relapse to cocaine-seeking behavior. Pharmacol Biochem Behav 64:327–336

    PubMed  CAS  Google Scholar 

  • Stella L, De Novellis V, Vitelli MR et al (2003) Interactive role of adenosine and dopamine in the opiate withdrawal syndrome. Naunyn Schmiedebergs Arch Pharmacol 368:113–118

    PubMed  CAS  Google Scholar 

  • Stolerman IP (1993) Components of drug dependence: reinforcement, discrimination and adaptation. Biochem Soc Symp 59:1–12

    PubMed  CAS  Google Scholar 

  • Sudakov SK, Rusakova IV, Medvedeva OF (2003) Effect of chronic caffeine consumption on changes in locomotor activity of WAG/G and Fischer-344 rats induced by nicotine, ethanol, and morphine. Bull Exp Biol Med 136:563–565

    PubMed  CAS  Google Scholar 

  • Svenningsson P, Nomikos GG, Fredholm BB (1999) The stimulatory action and the development of tolerance to caffeine is associated with alterations in gene expression in specific brain regions. J Neurosci 19:4011–4022

    PubMed  CAS  Google Scholar 

  • Swanson JA, Lee JW, Hopp JW (1994) Caffeine and nicotine: a review of their joint use and possible interactive effects in tobacco withdrawal. Addict Behav 19:229–256

    PubMed  CAS  Google Scholar 

  • Tronci E, Simola N, Carta AR et al (2006) Potentiation of amphetamine-mediated responses in caffeine-sensitized rats involves modifications in A2A receptors and zif-268 mRNAs in striatal neurons. J Neurochem 98:1078–1089

    PubMed  CAS  Google Scholar 

  • Tuazon DB, Suzuki T, Misawa M et al (1992) Methylxanthines (caffeine and theophylline) blocked methamphetamine-induced conditioned place preference in mice but enhanced that induced by cocaine. Ann N Y Acad Sci 654:531–533

    PubMed  CAS  Google Scholar 

  • Varty GB, Hodgson RA, Pond AJ et al (2008) The effects of adenosine A2A receptor antagonists on haloperidol-induced movement disorders in primates. Psychopharmacology 200:393–401

    PubMed  CAS  Google Scholar 

  • Vaugeois JM (2002) Signal transduction: positive feedback from coffee. Nature 418:734–736

    PubMed  CAS  Google Scholar 

  • Watson J, Deary I, Kerr D (2002) Central and peripheral effects of sustained caffeine use: tolerance is incomplete. Br J Clin Pharmacol 54:400–406

    PubMed  CAS  Google Scholar 

  • Weisberg SP, Kaplan GB (1999) Adenosine receptor antagonists inhibit the development of morphine sensitization in the C57BL/6 mouse. Neurosci Lett 264:89–92

    PubMed  CAS  Google Scholar 

  • Wolff K, Winstock AR (2006) Ketamine: from medicine to misuse. CNS Drugs 20:199–218

    PubMed  CAS  Google Scholar 

  • Young R, Gabryszuk M, Glennon RA (1998) (-)Ephedrine and caffeine mutually potentiate one another’s amphetamine-like stimulus effects. Pharmacol Biochem Behav 61:169–173

    PubMed  CAS  Google Scholar 

  • Zarrindast MR, Moghadamnia AA (1997) Adenosine receptor agents and conditioned place preference. Gen Pharmacol 29:285–289

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micaela Morelli .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Morelli, M., Simola, N. (2011). Methylxanthines and Drug Dependence: A Focus on Interactions with Substances of Abuse. In: Methylxanthines. Handbook of Experimental Pharmacology, vol 200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13443-2_20

Download citation

Publish with us

Policies and ethics