Methylxanthines, Inflammation, and Cancer: Fundamental Mechanisms

  • Akio OhtaEmail author
  • Michail Sitkovsky
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 200)


Methylxanthines are an integral part of everyday food and drink consumption even though the majority of humans do not identify them by their chemical name. The breakthrough in understanding the action(s) of methylxanthines was in large part due to the understanding that methylxanthines can function as antagonists of adenosine receptors. This represented an example of scientific search and was instructive in view of both new therapeutic options and alarming realizations. It was the subsequent demonstration of the in vivo critical role of A2A adenosine receptors in controlling excessive collateral inflammatory damage that attracted the attention of immunologists to the A2A-adenosine-receptor-antagonizing methylxanthines. We summarize here data showing that caffeine is capable of preventing the inhibition of antitumor T cells in a hypoxic tumor microenvironment. On the other hand, caffeine may exacerbate liver damage by weakening the tissue-protecting A2A adenosine receptor signaling during episodes of acute liver inflammation. However, methylxanthines may also prevent the excessive hepatic connective tissue deposition that is associated with the progression of chronic hepatitis to cirrhosis, which is one of the common causes of mortality.


Adenosine Adenosine receptor Autoimmunity Caffeine Hepatitis Hypoxia Tumor 



A2A adenosine receptors


Alanine aminotransferase


Aspartate aminotransferase


Cyclic AMP

Con A

Concanavalin A






  1. Akashi I, Kagami K, Hirano T, Oka K (2009) Protective effects of coffee-derived compounds on lipopolysaccharide/d-galactosamine induced acute liver injury in rats. J Pharm Pharmacol 61:473–478PubMedCrossRefGoogle Scholar
  2. Bai A, Higham E, Eisen HN, Wittrup KD, Chen J (2008) Rapid tolerization of virus-activated tumor-specific CD8+ T cells in prostate tumors of TRAMP mice. Proc Natl Acad Sci USA 105:13003–13008PubMedCrossRefGoogle Scholar
  3. Caraceni P, Van Thiel DH (1995) Acute liver failure. Lancet 345:163–169PubMedCrossRefGoogle Scholar
  4. Casiglia E, Spolaore P, Ginocchio G, Ambrosio GB (1993) Unexpected effects of coffee consumption on liver enzymes. Eur J Epidemiol 9:293–297PubMedCrossRefGoogle Scholar
  5. Chan ES, Montesinos MC, Fernandez P, Desai A, Delanoc DL, Yee H, Reiss AB, Pillinger MH, Chen JF, Schwarzschild MA, Friedman SL, Cronstein BN (2006) Adenosine A(2A) receptors play a role in the pathogenesis of hepatic cirrhosis. Br J Pharmacol 148:1144–1155PubMedCrossRefGoogle Scholar
  6. Chisari FV (1997) Cytotoxic T cells and viral hepatitis. J Clin Invest 99:1472–1477PubMedCrossRefGoogle Scholar
  7. Corrao G, Zambon A, Bagnardi V, D’Amicis A, Klatsky A, Group CSIDECIR (2001) Coffee, caffeine, and the risk of liver cirrhosis. Ann Epidemiol 11:458–465PubMedCrossRefGoogle Scholar
  8. Cronstein BN, Daguma L, Nichols D, Hutchison AJ, Williams M (1990) The adenosine/neutrophil paradox resolved: human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit O2 generation, respectively. J Clin Invest 85:1150–1157PubMedCrossRefGoogle Scholar
  9. Czaja AJ (2005) Current concepts in autoimmune hepatitis. Ann Hepatol 4:6–24PubMedGoogle Scholar
  10. Day YJ, Marshall MA, Huang L, McDuffie MJ, Okusa MD, Linden J (2004) Protection from ischemic liver injury by activation of A2A adenosine receptors during reperfusion: inhibition of chemokine induction. Am J Physiol Gastrointest Liver Physiol 286:G285–G293PubMedCrossRefGoogle Scholar
  11. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson SC (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265PubMedCrossRefGoogle Scholar
  12. Desai A, Victor-Vega C, Gadangi S, Montesinos MC, Chu CC, Cronstein BN (2005) Adenosine A2A receptor stimulation increases angiogenesis by down-regulating production of the antiangiogenic matrix protein thrombospondin 1. Mol Pharmacol 67:1406–1413PubMedCrossRefGoogle Scholar
  13. Dougan M, Dranoff G (2009) Immune therapy for cancer. Annu Rev Immunol 27:83–117PubMedCrossRefGoogle Scholar
  14. Drake CG, Doody AD, Mihalyo MA, Huang CT, Kelleher E, Ravi S, Hipkiss EL, Flies DB, Kennedy EP, Long M, McGary PW, Coryell L, Nelson WG, Pardoll DM, Adler AJ (2005) Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen. Cancer Cell 7:239–249PubMedCrossRefGoogle Scholar
  15. Driver AG, Kukoly CA, Ali S, Mustafa SJ (1993) Adenosine in bronchoalveolar lavage fluid in asthma. Am Rev Respir Dis 148:91–97PubMedGoogle Scholar
  16. Eltzschig HK, Thompson LF, Karhausen J, Cotta RJ, Ibla JC, Robson SC, Colgan SP (2004) Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood 104:3986–3992PubMedCrossRefGoogle Scholar
  17. Evans SM, Hahn S, Pook DR, Jenkins WT, Chalian AA, Zhang P, Stevens C, Weber R, Weinstein G, Benjamin I, Mirza N, Morgan M, Rubin S, McKenna WG, Lord EM, Koch CJ (2000) Detection of hypoxia in human squamous cell carcinoma by EF5 binding. Cancer Res 60: 2018–2024PubMedGoogle Scholar
  18. Fattovich G, Stroffolini T, Zagni I, Donato F (2004) Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 127:S35–S50PubMedCrossRefGoogle Scholar
  19. Fernández P, Trzaska S, Wilder T, Chiriboga L, Blackburn MR, Cronstein BN, Chan ES (2008) Pharmacological blockade of A2A receptors prevents dermal fibrosis in a model of elevated tissue adenosine. Am J Pathol 172:1675–1682PubMedCrossRefGoogle Scholar
  20. Foukas LC, Daniele N, Ktori C, Anderson KE, Jensen J, Shepherd PR (2002) Direct effects of caffeine and theophylline on p110 delta and other phosphoinositide 3-kinases. Differential effects on lipid kinase and protein kinase activities. J Biol Chem 277:37124–37130PubMedCrossRefGoogle Scholar
  21. Fozard JR, Ellis KM, Villela Dantas MF, Tigani B, Mazzoni L (2002) Effects of CGS 21680, a selective adenosine A2A receptor agonist, on allergic airways inflammation in the rat. Eur J Pharmacol 438:183–188PubMedCrossRefGoogle Scholar
  22. Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133PubMedGoogle Scholar
  23. Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552PubMedGoogle Scholar
  24. Freeman AJ, Law MG, Kaldor JM, Dore GJ (2003) Predicting progression to cirrhosis in chronic hepatitis C virus infection. J Viral Hepat 10:285–293PubMedCrossRefGoogle Scholar
  25. Gajewski TF, Meng Y, Blank C, Brown I, Kacha A, Kline J, Harlin H (2006) Immune resistance orchestrated by the tumor microenvironment. Immunol Rev 213:131–145PubMedCrossRefGoogle Scholar
  26. Gattinoni L, Powell DJ Jr, Rosenberg SA, Restifo NP (2006) Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 6:383–393PubMedCrossRefGoogle Scholar
  27. George SE, Ramalakshmi K, Mohan Rao LJ (2008) A perception on health benefits of coffee. Crit Rev Food Sci Nutr 48:464–486PubMedCrossRefGoogle Scholar
  28. Giatromanolaki A, Koukourakis MI, Sivridis E, Pastorek J, Wykoff CC, Gatter KC, Harris AL (2001) Expression of hypoxia-inducible carbonic anhydrase-9 relates to angiogenic pathways and independently to poor outcome in non-small cell lung cancer. Cancer Res 61:7992–7998PubMedGoogle Scholar
  29. Harris AL (2002) Hypoxia – a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47PubMedCrossRefGoogle Scholar
  30. He P, Noda Y, Sugiyama K (2001) Suppressive effect of coffee on lipopolysaccharide-induced hepatitis in d-galactosamine-sensitized rats. Biosci Biotechnol Biochem 65:1924–1927PubMedCrossRefGoogle Scholar
  31. Honjo S, Kono S, Coleman MP, Shinchi K, Sakurai Y, Todoroki I, Umeda T, Wakabayashi K, Imanishi K, Nishikawa H, Ogawa S, Katsurada M, Nakagawa K, Yoshizawa N (2001) Coffee consumption and serum aminotransferases in middle-aged Japanese men. J Clin Epidemiol 54:823–829PubMedCrossRefGoogle Scholar
  32. Horrigan LA, Kelly JP, Connor TJ (2004) Caffeine suppresses TNF-alpha production via activation of the cyclic AMP/protein kinase A pathway. Int Immunopharmacol 4:1409–1417PubMedCrossRefGoogle Scholar
  33. Horrigan LA, Kelly JP, Connor TJ (2006) Immunomodulatory effects of caffeine: friend or foe? Pharmacol Ther 111:877–892PubMedCrossRefGoogle Scholar
  34. Huang S, Apasov S, Koshiba M, Sitkovsky M (1997) Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood 90:1600–1610PubMedGoogle Scholar
  35. Kaneko Y, Harada M, Kawano T, Yamashita M, Shibata Y, Gejyo F, Nakayama T, Taniguchi M (2000) Augmentation of Valpha14 NKT cell-mediated cytotoxicity by interleukin 4 in an autocrine mechanism resulting in the development of concanavalin A-induced hepatitis. J Exp Med 191:105–114PubMedCrossRefGoogle Scholar
  36. Klatsky AL, Armstrong MA (1992) Alcohol, smoking, coffee, and cirrhosis. Am J Epidemiol 136:1248–1257PubMedGoogle Scholar
  37. Klatsky AL, Armstrong MA, Friedman GD (1993) Coffee, tea, and mortality. Ann Epidemiol 3:375–381PubMedCrossRefGoogle Scholar
  38. Kobie JJ, Shah PR, Yang L, Rebhahn JA, Fowell DJ, Mosmann TR (2006) T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5′-adenosine monophosphate to adenosine. J Immunol 177:6780–6786PubMedGoogle Scholar
  39. Koshiba M, Kojima H, Huang S, Apasov S, Sitkovsky MV (1997) Memory of extracellular adenosine/A2a purinergic receptor-mediated signaling in murine T cells. J Biol Chem 272:25881–25889PubMedCrossRefGoogle Scholar
  40. Laderoute KR, Alarcon RM, Brody MD, Calaoagan JM, Chen EY, Knapp AM, Yun Z, Denko NC, Giaccia AJ (2000) Opposing effects of hypoxia on expression of the angiogenic inhibitor thrombospondin 1 and the angiogenic inducer vascular endothelial growth factor. Clin Cancer Res 6:2941–2950PubMedGoogle Scholar
  41. Lai CL, Ratziu V, Yuen MF, Poynard T (2003) Viral hepatitis B. Lancet 362:2089–2094PubMedCrossRefGoogle Scholar
  42. Lappas CM, Rieger JM, Linden J (2005) A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4+ T cells. J Immunol 174:1073–1080PubMedGoogle Scholar
  43. Lappas CM, Day YJ, Marshall MA, Engelhard VH, Linden J (2006) Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation. J Exp Med 203:2639–2648PubMedCrossRefGoogle Scholar
  44. Lawrence T, Willoughby DA, Gilroy DW (2002) Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat Rev Immunol 2:787–795PubMedCrossRefGoogle Scholar
  45. Lee WM (2003) Acute liver failure in the United States. Semin Liver Dis 23:217–226PubMedCrossRefGoogle Scholar
  46. Lee WM (2004) Acetaminophen and the U.S. Acute Liver Failure Study Group: lowering the risks of hepatic failure. Hepatology 40:6–9PubMedCrossRefGoogle Scholar
  47. Link AA, Kino T, Worth JA, McGuire JL, Crane ML, Chrousos GP, Wilder RL, Elenkov IJ (2000) Ligand-activation of the adenosine A2a receptors inhibits IL-12 production by human monocytes. J Immunol 164:436–442PubMedGoogle Scholar
  48. Luster MI, Simeonova PP, Gallucci RM, Bruccoleri A, Blazka ME, Yucesoy B (2001) Role of inflammation in chemical-induced hepatotoxicity. Toxicol Lett 120:317–321PubMedCrossRefGoogle Scholar
  49. Martin C, Leone M, Viviand X, Ayem ML, Guieu R (2000) High adenosine plasma concentration as a prognostic index for outcome in patients with septic shock. Crit Care Med 28:3198–3202PubMedCrossRefGoogle Scholar
  50. May DC, Jarboe CH, VanBakel AB, Williams WM (1982) Effects of cimetidine on caffeine disposition in smokers and nonsmokers. Clin Pharmacol Ther 31:656–661PubMedCrossRefGoogle Scholar
  51. Mellor AL, Munn DH (2008) Creating immune privilege: active local suppression that benefits friends, but protects foes. Nat Rev Immunol 8:74–80PubMedCrossRefGoogle Scholar
  52. Montesinos MC, Desai A, Delano D, Chen JF, Fink JS, Jacobson MA, Cronstein BN (2003) Adenosine A2A or A3 receptors are required for inhibition of inflammation by methotrexate and its analog MX-68. Arthritis Rheum 48:240–247PubMedCrossRefGoogle Scholar
  53. Montesinos MC, Shaw JP, Yee H, Shamamian P, Cronstein BN (2004) Adenosine A(2A) receptor activation promotes wound neovascularization by stimulating angiogenesis and vasculogenesis. Am J Pathol 164:1887–1892PubMedCrossRefGoogle Scholar
  54. Morote-Garcia JC, Rosenberger P, Kuhlicke J, Eltzschig HK (2008) HIF-1-dependent repression of adenosine kinase attenuates hypoxia-induced vascular leak. Blood 111:5571–5580PubMedCrossRefGoogle Scholar
  55. Nakamoto Y, Guidotti LG, Kuhlen CV, Fowler P, Chisari FV (1998) Immune pathogenesis of hepatocellular carcinoma. J Exp Med 188:341–350PubMedCrossRefGoogle Scholar
  56. Nakav S, Kachko L, Vorobiov M, Rogachev B, Chaimovitz C, Zlotnik M, Douvdevani A (2009) Blocking adenosine A2A receptor reduces peritoneal fibrosis in two independent experimental models. Nephrol Dial Transplant 24:2392–2399PubMedCrossRefGoogle Scholar
  57. Németh ZH, Csóka B, Wilmanski J, Xu D, Lu Q, Ledent C, Deitch EA, Pacher P, Spolarics Z, Haskó G (2006) Adenosine A2A receptor inactivation increases survival in polymicrobial sepsis. J Immunol 176:5616–5626PubMedGoogle Scholar
  58. Nielson CP, Vestal RE, Sturm RJ, Heaslip R (1990) Effects of selective phosphodiesterase inhibitors on the polymorphonuclear leukocyte respiratory burst. J Allergy Clin Immunol 86:801–808PubMedCrossRefGoogle Scholar
  59. Odashima M, Bamias G, Rivera-Nieves J, Linden J, Nast CC, Moskaluk CA, Marini M, Sugawara K, Kozaiwa K, Otaka M, Watanabe S, Cominelli F (2005) Activation of A2A adenosine receptor attenuates intestinal inflammation in animal models of inflammatory bowel disease. Gastroenterology 129:26–33PubMedCrossRefGoogle Scholar
  60. Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920PubMedCrossRefGoogle Scholar
  61. Ohta A, Sekimoto M, Sato M, Koda T, Nishimura S, Iwakura Y, Sekikawa K, Nishimura T (2000) Indispensable role for TNF-alpha and IFN-gamma at the effector phase of liver injury mediated by Th1 cells specific to hepatitis B virus surface antigen. J Immunol 165:956–961PubMedGoogle Scholar
  62. Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK, Huang X, Caldwell S, Liu K, Smith P, Chen JF, Jackson EK, Apasov S, Abrams S, Sitkovsky M (2006) A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci USA 103:13132–13137PubMedCrossRefGoogle Scholar
  63. Ohta A, Lukashev D, Jackson EK, Fredholm BB, Sitkovsky M (2007) 1,3,7-Trimethylxanthine (caffeine) may exacerbate acute inflammatory liver injury by weakening the physiological immunosuppressive mechanism. J Immunol 179:7431–7438PubMedGoogle Scholar
  64. Poynard T, Yuen MF, Ratziu V, Lai CL (2003) Viral hepatitis C. Lancet 362:2095–2100PubMedCrossRefGoogle Scholar
  65. Rehermann B (2000) Intrahepatic T cells in hepatitis B: viral control versus liver cell injury. J Exp Med 191:1263–1268PubMedCrossRefGoogle Scholar
  66. Ruhl CE, Everhart JE (2005a) Coffee and tea consumption are associated with a lower incidence of chronic liver disease in the United States. Gastroenterology 129:1928–1936PubMedCrossRefGoogle Scholar
  67. Ruhl CE, Everhart JE (2005b) Coffee and caffeine consumption reduce the risk of elevated serum alanine aminotransferase activity in the United States. Gastroenterology 128:24–32PubMedCrossRefGoogle Scholar
  68. Safadi R, Ohta M, Alvarez CE, Fiel MI, Bansal M, Mehal WZ, Friedman SL (2004) Immune stimulation of hepatic fibrogenesis by CD8 cells and attenuation by transgenic interleukin-10 from hepatocytes. Gastroenterology 127:870–882PubMedCrossRefGoogle Scholar
  69. Schumann J, Wolf D, Pahl A, Brune K, Papadopoulos T, van Rooijen N, Tiegs G (2000) Importance of Kupffer cells for T-cell-dependent liver injury in mice. Am J Pathol 157:1671–1683PubMedCrossRefGoogle Scholar
  70. Shi Z, Wakil AE, Rockey DC (1997) Strain-specific differences in mouse hepatic wound healing are mediated by divergent T helper cytokine responses. Proc Natl Acad Sci USA 94:10663–10668PubMedCrossRefGoogle Scholar
  71. Simeonova PP, Gallucci RM, Hulderman T, Wilson R, Kommineni C, Rao M, Luster MI (2001) The role of tumor necrosis factor-alpha in liver toxicity, inflammation, and fibrosis induced by carbon tetrachloride. Toxicol Appl Pharmacol 177:112–120PubMedCrossRefGoogle Scholar
  72. Sitkovsky MV, Ohta A (2005) The ‘danger’ sensors that STOP the immune response: the A2 adenosine receptors? Trends Immunol 26:299–304PubMedCrossRefGoogle Scholar
  73. Sitkovsky MV, Trenn G, Takayama H (1988) Cyclic AMP-dependent protein kinase as a part of the possible down-regulating pathway in the antigen receptor-regulated cytotoxic T lymphocyte conjugate formation and granule exocytosis. Ann N Y Acad Sci 532:350–358PubMedCrossRefGoogle Scholar
  74. Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, Caldwell C, Ohta A, Thiel M (2004) Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol 22:657–682PubMedCrossRefGoogle Scholar
  75. Sitkovsky MV, Kjaergaard J, Lukashev D, Ohta A (2008) Hypoxia-adenosinergic immunosuppression: tumor protection by T regulatory cells and cancerous tissue hypoxia. Clin Cancer Res 14:5947–5952PubMedCrossRefGoogle Scholar
  76. Smith JM, Pearson S, Marks V (1982) Plasma caffeine concentration in outpatients. Lancet 2:985–986PubMedCrossRefGoogle Scholar
  77. Sugiyama H, Chen P, Hunter M, Sitkovsky M (1997) Perturbation of the expression of the catalytic subunit Ca of cyclic AMP-dependent protein kinase inhibits TCR-triggered secretion of IL-2 by T-helper cells. J Immunol 158:171PubMedGoogle Scholar
  78. Tanaka K, Tokunaga S, Kono S, Tokudome S, Akamatsu T, Moriyama T, Zakouji H (1998) Coffee consumption and decreased serum gamma-glutamyltransferase and aminotransferase activities among male alcohol drinkers. Int J Epidemiol 27:438–443PubMedCrossRefGoogle Scholar
  79. Thiel M, Chouker A, Ohta A, Jackson E, Caldwell C, Smith P, Lukashev D, Bittmann I, Sitkovsky MV (2005) Oxygenation inhibits the physiological tissue-protecting mechanism and thereby exacerbates acute inflammatory lung injury. PLoS Biol 3:e174PubMedCrossRefGoogle Scholar
  80. Tiegs G, Hentschel J, Wendel A (1992) A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest 90:196–203PubMedCrossRefGoogle Scholar
  81. Tiffin P, Ashton H, Marsh R, Kamali F (1995) Pharmacokinetic and pharmacodynamic responses to caffeine in poor and normal sleepers. Psychopharmacology 121:494–502PubMedCrossRefGoogle Scholar
  82. Toyabe S, Seki S, Iiai T, Takeda K, Shirai K, Watanabe H, Hiraide H, Uchiyama M, Abo T (1997) Requirement of IL-4 and liver NK1+ T cells for concanavalin A-induced hepatic injury in mice. J Immunol 159:1537–1542PubMedGoogle Scholar
  83. Trautmann A (2009) Extracellular ATP in the immune system: more than just a “danger signal”. Sci Signal 2:pe6PubMedCrossRefGoogle Scholar
  84. Tverdal A, Skurtveit S (2003) Coffee intake and mortality from liver cirrhosis. Ann Epidemiol 13:419–423PubMedCrossRefGoogle Scholar
  85. Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239PubMedCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Pharmaceutical Sciences, New England Inflammation and Tissue Protection InstituteNortheastern UniversityBostonUSA
  2. 2.Cancer Vaccine CenterDana-Farber Cancer Institute, Harvard Institutes of MedicineBostonUSA

Personalised recommendations