Advertisement

Methylxanthines and Inflammatory Cells

  • György Haskó
  • Bruce Cronstein
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 200)

Abstract

Both caffeine and theophylline have a variety of roles in regulating inflammatory responses. At pharmacologically relevant concentrations most of the effects of these commonly used methylxanthines are attributable to adenosine receptor blockade and histone deacetylase activation. In addition, at higher concentrations methylxanthines can suppress inflammation by inhibiting phosphodiesterases, thereby elevating intracellular cyclic adenosine monophosphate levels. In summary, methylxanthines regulate inflammation by multiple mechanisms.

Keywords

Asthma Arthritis Chronic obstructive pulmonary disease Cytokine Macrophage Methothrexate Monocyte Neutrophil Tumor necrosis factor Protein kinase A 

References

  1. Baker AJ, Fuller RW (1992) Effect of cyclic adenosine monophosphate, 5′-(N-ethylcarboxyamido)-adenosine and methylxanthines on the release of thromboxane and lysosomal enzymes from human alveolar macrophages and peripheral blood monocytes in vitro. Eur J Pharmacol 211:157–161PubMedCrossRefGoogle Scholar
  2. Barnes PJ (2006) Theophylline for COPD. Thorax 61:742–744PubMedCrossRefGoogle Scholar
  3. Beavo JA, Rogers NL, Crofford OB, Baird CE, Hardman JG, Sutherland EW, Newman EV (1971) Effects of phosphodiesterase inhibitors on cyclic AMP levels and on lipolysis. Ann N Y Acad Sci 185:129–136PubMedCrossRefGoogle Scholar
  4. Benito-Garcia E, Heller JE, Chibnik LB, Maher NE, Matthews HM, Bilics JA, Weinblatt ME, Shadick NA (2006) Dietary caffeine intake does not affect methotrexate efficacy in patients with rheumatoid arthritis. J Rheumatol 33:1275–1281PubMedGoogle Scholar
  5. Bruns RF, Lu GH, Pugsley TA (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol 29:331–346PubMedGoogle Scholar
  6. Chavez-Valdez R, Wills-Karp M, Ahlawat R, Cristofalo EA, Nathan A, Gauda EB (2009) Caffeine modulates TNF-alpha production by cord blood monocytes: the role of adenosine receptors. Pediatr Res 65:203–208PubMedCrossRefGoogle Scholar
  7. Che J, Chan ES, Cronstein BN (2007) Adenosine A2A receptor occupancy stimulates collagen expression by hepatic stellate cells via pathways involving protein kinase A, Src, and extracellular signal-regulated kinases 1/2 signaling cascade or p38 mitogen-activated protein kinase signaling pathway. Mol Pharmacol 72:1626–1636PubMedCrossRefGoogle Scholar
  8. Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, Nizet V, Insel PA, Junger WG (2006) ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314:1792–1795PubMedCrossRefGoogle Scholar
  9. Cosio BG, Tsaprouni L, Ito K, Jazrawi E, Adcock IM, Barnes PJ (2004) Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. J Exp Med 200:689–695PubMedCrossRefGoogle Scholar
  10. Cronstein BN (2005) Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol Rev 57:163–172PubMedCrossRefGoogle Scholar
  11. Csoka B, Nemeth ZH, Virag L, Gergely P, Leibovich SJ, Pacher P, Sun CX, Blackburn MR, Vizi ES, Deitch EA, Hasko G (2007) A2A adenosine receptors and C/EBPbeta are crucially required for IL-10 production by macrophages exposed to Escherichia coli. Blood 110:2685–2695PubMedCrossRefGoogle Scholar
  12. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson SC (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265PubMedCrossRefGoogle Scholar
  13. Dervieux T (2009) Methotrexate pharmacogenomics in rheumatoid arthritis: introducing false-positive report probability. Rheumatology (Oxford) 48:597–598CrossRefGoogle Scholar
  14. Dervieux T, Furst D, Lein DO, Capps R, Smith K, Walsh M, Kremer J (2004) Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase, and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis Rheum 50:2766–2774PubMedCrossRefGoogle Scholar
  15. Dervieux T, Furst D, Lein DO, Capps R, Smith K, Caldwell J, Kremer J (2005) Pharmacogenetic and metabolite measurements are associated with clinical status in patients with rheumatoid arthritis treated with methotrexate: results of a multicentred cross sectional observational study. Ann Rheum Dis 64:1180–1185PubMedCrossRefGoogle Scholar
  16. Dervieux T, Wessels JA, van der Straaten T, Penrod N, Moore JH, Guchelaar HJ, Kremer JM (2009) Gene–gene interactions in folate and adenosine biosynthesis pathways affect methotrexate efficacy and tolerability in rheumatoid arthritis. Pharmacogenet GenomicsGoogle Scholar
  17. Eltzschig HK, Macmanus CF, Colgan SP (2008) Neutrophils as sources of extracellular nucleotides: functional consequences at the vascular interface. Trends Cardiovasc Med 18:103–107PubMedCrossRefGoogle Scholar
  18. Endres S, Fulle HJ, Sinha B, Stoll D, Dinarello CA, Gerzer R, Weber PC (1991) Cyclic nucleotides differentially regulate the synthesis of tumour necrosis factor-alpha and interleukin-1 beta by human mononuclear cells. Immunology 72:56–60PubMedGoogle Scholar
  19. Erdmann AA, Gao ZG, Jung U, Foley J, Borenstein T, Jacobson KA, Fowler DH (2005) Activation of Th1 and Tc1 cell adenosine A2A receptors directly inhibits IL-2 secretion in vitro and IL-2-driven expansion in vivo. Blood 105:4707–4714PubMedCrossRefGoogle Scholar
  20. Feoktistov I, Biaggioni I (1995) Adenosine A2b receptors evoke interleukin-8 secretion in human mast cells. An enprofylline-sensitive mechanism with implications for asthma. J Clin Invest 96:1979–1986PubMedCrossRefGoogle Scholar
  21. Feoktistov I, Biaggioni I (1997) Adenosine A2B receptors. Pharmacol Rev 49:381–402PubMedGoogle Scholar
  22. Fozard JR, Hannon JP (1999) Adenosine receptor ligands: potential as therapeutic agents in asthma and COPD. Pulm Pharmacol Ther 12:111–114PubMedCrossRefGoogle Scholar
  23. Fozard JR, Pfannkuche HJ, Schuurman HJ (1996) Mast cell degranulation following adenosine A3 receptor activation in rats. Eur J Pharmacol 298:293–297PubMedCrossRefGoogle Scholar
  24. Fredholm BB (2007) Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ 14:1315–1323PubMedCrossRefGoogle Scholar
  25. Fredholm BB, Sandberg G (1983) Inhibition by xanthine derivatives of adenosine receptor-stimulated cyclic adenosine 3′,5′-monophosphate accumulation in rat and guinea-pig thymocytes. Br J Pharmacol 80:639–644PubMedCrossRefGoogle Scholar
  26. Fredholm BB, Zhang Y, van der Ploeg I (1996) Adenosine A2A receptors mediate the inhibitory effect of adenosine on formyl-Met-Leu-Phe-stimulated respiratory burst in neutrophil leucocytes. Naunyn Schmiedebergs Arch Pharmacol 354:262–267PubMedCrossRefGoogle Scholar
  27. Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133PubMedGoogle Scholar
  28. Fredholm BB, Irenius E, Kull B, Schulte G (2001) Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem Pharmacol 61:443–448PubMedCrossRefGoogle Scholar
  29. Fredholm BB, Chern Y, Franco R, Sitkovsky M (2007) Aspects of the general biology of adenosine A2A signaling. Prog Neurobiol 83:263–276PubMedCrossRefGoogle Scholar
  30. Gessi S, Merighi S, Varani K, Leung E, Mac Lennan S, Borea PA (2008) The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 117:123–140PubMedCrossRefGoogle Scholar
  31. Hasko G, Szabo C, Nemeth ZH, Salzman AL, Vizi ES (1998) Suppression of IL-12 production by phosphodiesterase inhibition in murine endotoxemia is IL-10 independent. Eur J Immunol 28:468–472PubMedCrossRefGoogle Scholar
  32. Hasko G, Pacher P, Deitch EA, Vizi ES (2007) Shaping of monocyte and macrophage function by adenosine receptors. Pharmacol Ther 113:264–275PubMedCrossRefGoogle Scholar
  33. Hasko G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759–770PubMedCrossRefGoogle Scholar
  34. Hasko G, Csoka B, Nemeth ZH, Vizi ES, Pacher P (2009) A(2B) adenosine receptors in immunity and inflammation. Trends Immunol 30:263–270PubMedCrossRefGoogle Scholar
  35. Hichami A, Boichot E, Germain N, Legrand A, Moodley I, Lagente V (1995) Involvement of cyclic AMP in the effects of phosphodiesterase IV inhibitors on arachidonate release from mononuclear cells. Eur J Pharmacol 291:91–97PubMedCrossRefGoogle Scholar
  36. Holgate ST (2005) The Quintiles Prize Lecture 2004. The identification of the adenosine A2B receptor as a novel therapeutic target in asthma. Br J Pharmacol 145:1009–1015PubMedCrossRefGoogle Scholar
  37. Horrigan LA, Kelly JP, Connor TJ (2004) Caffeine suppresses TNF-alpha production via activation of the cyclic AMP/protein kinase A pathway. Int Immunopharmacol 4:1409–1417PubMedCrossRefGoogle Scholar
  38. Horrigan LA, Kelly JP, Connor TJ (2006) Immunomodulatory effects of caffeine: friend or foe? Pharmacol Ther 111:877–892PubMedCrossRefGoogle Scholar
  39. Inouye LK, Wharton W (1986) The relationship between intracellular cyclic AMP concentrations and the in vitro growth of macrophages. J Leukoc Biol 39:657–670PubMedGoogle Scholar
  40. Ito K, Lim S, Caramori G, Cosio B, Chung KF, Adcock IM, Barnes PJ (2002) A molecular mechanism of action of theophylline: induction of histone deacetylase activity to decrease inflammatory gene expression. Proc Natl Acad Sci USA 99:8921–8926PubMedCrossRefGoogle Scholar
  41. Jin X, Shepherd RK, Duling BR, Linden J (1997) Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation. J Clin Invest 100:2849–2857PubMedCrossRefGoogle Scholar
  42. Khoa ND, Montesinos MC, Reiss AB, Delano D, Awadallah N, Cronstein BN (2001) Inflammatory cytokines regulate function and expression of adenosine A(2A) receptors in human monocytic THP-1 cells. J Immunol 167:4026–4032PubMedGoogle Scholar
  43. Meiners I, Hauschildt S, Nieber K, Munch G (2004) Pentoxyphylline and propentophylline are inhibitors of TNF-alpha release in monocytes activated by advanced glycation endproducts. J Neural Transm 111:441–447PubMedCrossRefGoogle Scholar
  44. Montesinos C, Yap JS, Desai A, Posadas I, McCrary CT, Cronstein BN (2000) Reversal of the antiinflammatory effects of methotrexate by the nonselective adenosine receptor antagonists theophylline and caffeine. Evidence that the antiinflammatory effects of methotrexate are mediated via multiple adenosine receptors in rat adjuvant arthritis. Arthritis Rheum 43:656–663PubMedCrossRefGoogle Scholar
  45. Mustafa SJ, Nadeem A, Fan M, Zhong H, Belardinelli L, Zeng D (2007) Effect of a specific and selective A(2B) adenosine receptor antagonist on adenosine agonist AMP and allergen-induced airway responsiveness and cellular influx in a mouse model of asthma. J Pharmacol Exp Ther 320:1246–1251PubMedCrossRefGoogle Scholar
  46. Nemeth ZH, Hasko G, Szabo C, Vizi ES (1997) Amrinone and theophylline differentially regulate cytokine and nitric oxide production in endotoxemic mice. Shock 7:371–375PubMedCrossRefGoogle Scholar
  47. Nemeth ZH, Leibovich SJ, Deitch EA, Sperlagh B, Virag L, Vizi ES, Szabo C, Hasko G (2003) Adenosine stimulates CREB activation in macrophages via a p38 MAPK-mediated mechanism. Biochem Biophys Res Commun 312:883–888PubMedCrossRefGoogle Scholar
  48. Nesher G, Mates M, Zevin S (2003) Effect of caffeine consumption on efficacy of methotrexate in rheumatoid arthritis. Arthritis Rheum 48:571–572PubMedCrossRefGoogle Scholar
  49. Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920PubMedCrossRefGoogle Scholar
  50. Ohta A, Lukashev D, Jackson EK, Fredholm BB, Sitkovsky M (2007) 1, 3, 7-trimethylxanthine (caffeine) may exacerbate acute inflammatory liver injury by weakening the physiological immunosuppressive mechanism. J Immunol 179:7431–7438PubMedGoogle Scholar
  51. Polosa R, Holgate ST (2006) Adenosine receptors as promising therapeutic targets for drug development in chronic airway inflammation. Curr Drug Targets 7:699–706PubMedCrossRefGoogle Scholar
  52. Revan S, Montesinos MC, Naime D, Landau S, Cronstein BN (1996) Adenosine A2 receptor occupancy regulates stimulated neutrophil function via activation of a serine/threonine protein phosphatase. J Biol Chem 271:17114–17118PubMedCrossRefGoogle Scholar
  53. Ryzhov S, Goldstein AE, Biaggioni I, Feoktistov I (2006) Cross-talk between G(s)- and G(q)-coupled pathways in regulation of interleukin-4 by A(2B) adenosine receptors in human mast cells. Mol Pharmacol 70:727–735PubMedCrossRefGoogle Scholar
  54. Sawynok J, Yaksh TL (1993) Caffeine as an analgesic adjuvant: a review of pharmacology and mechanisms of action. Pharmacol Rev 45:43–85PubMedGoogle Scholar
  55. Silke C, Murphy MS, Buckley T, Busteed S, Molloy MG, Phelan M (2001) The effects of caffeine ingestion on the efficacy of methotrexate. Rheumatology (Oxford) 40(Suppl 1):34Google Scholar
  56. Sitkovsky MV (2009) T regulatory cells: hypoxia-adenosinergic suppression and re-direction of the immune response. Trends Immunol 30(3):102–108PubMedCrossRefGoogle Scholar
  57. Sullivan GW, Luong LS, Carper HT, Barnes RC, Mandell GL (1995) Methylxanthines with adenosine alter TNF alpha-primed PMN activation. Immunopharmacology 31:19–29PubMedCrossRefGoogle Scholar
  58. van Calker D, Muller M, Hamprecht B (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33:999–1005PubMedCrossRefGoogle Scholar
  59. Volonte C, D’Ambrosi N (2009) Membrane compartments and purinergic signalling: the purinome, a complex interplay among ligands, degrading enzymes, receptors and transporters. FEBS J 276:318–329PubMedCrossRefGoogle Scholar
  60. Walker BA, Rocchini C, Boone RH, Ip S, Jacobson MA (1997) Adenosine A2a receptor activation delays apoptosis in human neutrophils. J Immunol 158:2926–2931PubMedGoogle Scholar
  61. Weisman MH, Furst DE, Park GS, Kremer JM, Smith KM, Wallace DJ, Caldwell JR, Dervieux T (2006) Risk genotypes in folate-dependent enzymes and their association with methotrexate-related side effects in rheumatoid arthritis. Arthritis Rheum 54:607–612PubMedCrossRefGoogle Scholar
  62. Wessels JA, de Vries-Bouwstra JK, Heijmans BT, Slagboom PE, Goekoop-Ruiterman YP, Allaart CF, Kerstens PJ, van Zeben D, Breedveld FC, Dijkmans BA, Huizinga TW, Guchelaar HJ (2006a) Efficacy and toxicity of methotrexate in early rheumatoid arthritis are associated with single-nucleotide polymorphisms in genes coding for folate pathway enzymes. Arthritis Rheum 54:1087–1095PubMedCrossRefGoogle Scholar
  63. Wessels JA, Kooloos WM, Jonge RD, De Vries-Bouwstra JK, Allaart CF, Linssen A, Collee G, Sonnaville PD, Lindemans J, Huizinga TW, Guchelaar HJ (2006b) Relationship between genetic variants in the adenosine pathway and outcome of methotrexate treatment in patients with recent-onset rheumatoid arthritis. Arthritis Rheum 54:2830–2839PubMedCrossRefGoogle Scholar
  64. Yasui K, Hu B, Nakazawa T, Agematsu K, Komiyama A (1997) Theophylline accelerates human granulocyte apoptosis not via phosphodiesterase inhibition. J Clin Invest 100:1677–1684PubMedCrossRefGoogle Scholar
  65. Yasui K, Agematsu K, Shinozaki K, Hokibara S, Nagumo H, Nakazawa T, Komiyama A (2000a) Theophylline induces neutrophil apoptosis through adenosine A2A receptor antagonism. J Leukoc Biol 67:529–535PubMedGoogle Scholar
  66. Yasui K, Agematsu K, Shinozaki K, Hokibara S, Nagumo H, Yamada S, Kobayashi N, Komiyama A (2000b) Effects of theophylline on human eosinophil functions: comparative study with neutrophil functions. J Leukoc Biol 68:194–200PubMedGoogle Scholar
  67. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783(5):673–694PubMedCrossRefGoogle Scholar
  68. Zhong H, Shlykov SG, Molina JG, Sanborn BM, Jacobson MA, Tilley SL, Blackburn MR (2003) Activation of murine lung mast cells by the adenosine A3 receptor. J Immunol 171:338–345PubMedGoogle Scholar
  69. Zhong H, Belardinelli L, Maa T, Feoktistov I, Biaggioni I, Zeng D (2004) A(2B) adenosine receptors increase cytokine release by bronchial smooth muscle cells. Am J Respir Cell Mol Biol 30:118–125PubMedCrossRefGoogle Scholar
  70. Zhong H, Belardinelli L, Maa T, Zeng D (2005) Synergy between A2B adenosine receptors and hypoxia in activating human lung fibroblasts. Am J Respir Cell Mol Biol 32:2–8PubMedCrossRefGoogle Scholar
  71. Zhong H, Wu Y, Belardinelli L, Zeng D (2006) A2B adenosine receptors induce IL-19 from bronchial epithelial cells, resulting in TNF-alpha increase. Am J Respir Cell Mol Biol 35:587–592PubMedCrossRefGoogle Scholar
  72. Zhou QY, Li C, Olah ME, Johnson RA, Stiles GL, Civelli O (1992) Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc Natl Acad Sci USA 89:7432–7436PubMedCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  • György Haskó
    • 1
  • Bruce Cronstein
    • 2
  1. 1.Department of SurgeryUniversity of Medicine and Dentistry of New Jersey-New Jersey Medical SchoolNewarkUSA
  2. 2.Department of MedicineNew York University School of MedicineNew YorkUSA

Personalised recommendations