Abstract
Reproduction is the process by which organisms create descendants. In human reproduction, two kinds of sex cells, or gametes, are involved. Sperm, the male gamete, and egg , or ovum , the female gamete, must meet in the female reproductive system to create a new individual and both the female and the male reproductive systems are essential to the occurrence of reproduction. Scientific reports dealing with the effects of methylxanthines on reproduction are mostly centred on the use of these compounds as phosphodiesterase inhibitors that, by maintaining high intracellular levels of cyclic AMP (cAMP) , will affect the gametes differently. High cAMP levels will sustain sperm maturation while they hold the oocytes in mitotic arrest. Caffeine , being the methylxanthine most widely consumed by every segment of the population, has been the subject of greatest interest among health professionals and researchers. Conflicting results still seem to characterize the association between male/female caffeine consumption in adult life and semen quality/fertility , although moderate daily caffeine consumption of levels up to 400–450 mg/day (5.7–6.4 mg/kg/day in a 70-kg adult) do not seem to be associated with adverse effects, i.e. general toxicity, effects on bone status and calcium balance, cardiovascular effects, behavioural changes, increased incidence of cancer, or effects on male fertility. A clear stimulation of egg-laying by the coffee leaf pest Leucoptera coffeella was recently reported, providing support for the hypothesis that caffeine, in a dose-dependent way, in insects stimulates egg-laying, thus leading to the death of coffee trees.
Keywords
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsAbbreviations
- AC:
-
Adenylyl cyclase
- AR:
-
Acrosome reaction
- cAMP:
-
Cyclic AMP
- Cdk1:
-
Cyclin-dependant kinase
- dbcAMP:
-
Dibutyryl cyclic AMP
- FSH:
-
Follicle-stimulating hormone
- GIFT:
-
Gamete intra-Fallopian transfer
- IBMX:
-
3-Isobutyl-1-methylxanthine
- IVF:
-
In vitro fertilization
- LH:
-
Luteinizing hormone
- LHR:
-
Luteinizing hormone receptor
- MI:
-
Metaphase I
- MPF:
-
Maturation/meiosis or mitosis promoting factor
- NOEL:
-
No-observed-effect level
- PDE:
-
Phosphodiesterase
- PKA:
-
Protein kinase A
- PKB:
-
Protein kinase B
- UPP:
-
Ubiquitin-proteasome pathway
References
Abou-haila A, Tulsiani DR (2009) Signal transduction pathways that regulate sperm capacitation and the acrosome reaction. Arch Biochem Biophys 485:72–81
Ain R, Uma Devi K, Shivaji S, Seshagiri PB (1999) Pentoxifylline-stimulated capacitation and acrosome reaction in hamster spermatozoa: involvement of intracellular signalling molecules. Mol Hum Reprod 5:618–626
Aitken RJ, Harkiss D, Knox W, Paterson M, Irvine DS (1998) A novel signal transduction cascade in capacitating human spermatozoa characterised by a redox-regulated, cAMP-mediated induction of tyrosine phosphorylation. J Cell Sci 111:645–656
Aitken RJ, Nixon B, Lin M, Koppers AJ, Lee YH, Baker MA (2007) Proteomic changes in mammalian spermatozoa during epididymal maturation. Asian J Androl 9:554–564
Ax RL, Collier RJ, Lodge JR (1976) Effects of dietary caffeine on the testis of the domestic fowl, Gallus domesticus. J Reprod Fertil 47:235–238
Allegrucci C, Liguori L, Minelli A (2001) Stimulation by N6-cyclopentyladenosine of A1 adenosine receptors, coupled to Gαi2 protein subunit, has a capacitative effect on human spermatozoa. Biol Reprod 64:1653–1659
Baldi E, Luconi M, Bonaccorsi L, Muratori M, Forti G (2000) Intracellular events and signaling pathways involved in sperm acquisition of fertilizing capacity and acrosome reaction. Front Biosci 5:110–123
Barretto LS, Caiado Castro VS, Garcia JM, Mingoti GZ (2007) Role of roscovitine and IBMX on kinetics of nuclear and cytoplasmic maturation of bovine oocytes in vitro. Anim Reprod Sci 99:202–207
Björklund O, Kahlström J, Salmi P, Fredholm BB (2008) Perinatal caffeine, acting on maternal adenosine A(1) receptors, causes long-lasting behavioral changes in mouse offspring. PLoS ONE 3:e3977
Bolúmar F, Olsen J, Rebagliato M, Bisanti L (1997) Caffeine intake and delayed conception: a European multicenter study on infertility and subfecundity. European study group on infertility subfecundity. Am J Epidemiol 145:324–334
Bornslaeger EA, Schultz RM (1985) Regulation of mouse oocyte maturation: effect of elevating cumulus cell cAMP on oocyte cAMP levels. Biol Reprod 33:698–704
Bracken MB, Triche EW, Belanger K, Hellenbrand K, Leaderer B (2003) Association of maternal caffeine consumption with decrements in fetal growth. Am J Epidemiol 157:456–466
Buffone MG, Calamera JC, Verstraeten SV, Doncel GF (2005) Capacitation-associated protein tyrosine phosphorylation and membrane fluidity changes are impaired in the spermatozoa of asthenozoospermic patients. Reproduction 129:697–705
CARE Study Group (2008) Maternal caffeine intake during pregnancy and risk of fetal growth restriction: a large prospective observational study. BMJ 337:a2332. doi:10.1136/bmj.a2332
Carr DW, Acott TS (1990) The phosphorylation of a putative sperm microtubule-associated protein 2 (MAP2) is uniquely sensitive to regulation. Biol Reprod 43:795–805
Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC (2009) Caffeinated and alcoholic beverage intake in relation to ovulatory disorder infertility. Epidemiology 20:374–381
Chiarella P, Puglisi R, Sorrentino V, Boitani C, Stefanini M (2004) Ryanodine receptors are expressed and functionally active in mouse spermatogenic cells and their inhibition interferes with spermatogonial differentiation. J Cell Sci 117:4127–4134
Cho WK, Stern S, Biggers JD (1974) Inhibitory effect of dibutyryl cAMP on mouse oocyte maturation in vitro. J Exp Zool 187:383–386
Christian MS, Brent RL (2001) Teratogen update: evaluation of the reproductive and developmental risks of caffeine. Teratology 64:51–78
Conti M, Andersen CB, Richard F, Mehats C, Chun SY, Horner K, Jin C, Tsafriri A (2002) Role of cyclic nucleotide signaling in oocyte maturation. Mol Cell Endocrinol 187:153–159
de Lamirande E, Leclerc P, Gagnon C (1997) Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol Hum Reprod 3:175–194
Dekel N, Beers WH (1978) Rat oocyte maturation in vitro: relief of cyclic AMP inhibition by gonadotropins. Proc Natl Acad Sci USA 75:4369–4373
De Jonge CJ, Barratt CLR, Radwanska EWA, Cooke ID (1993) The acrosome reaction-inducing effect of human follicular and oviductal fluid. J Androl 14:359–365
Depeiges A, Dacheux JL (1985) Acquisition of sperm motility and its maintenance during storage in the lizard, Lacerta vivipara. J Reprod Fertil 74:23–27
Derbyshire E, Abdula S (2008) Habitual caffeine intake in women of childbearing age. J Hum Nutr Diet 21:159–164
Dews PB (1982) Caffeine. Annu Rev Nutr 2:323–241
Duckworth BC, Weaver JS, Ruderman JV (2002) G2 arrest in Xenopus oocytes depends on phosphorylation of cdc25 by protein kinase A. Proc Natl Acad Sci USA 99:16794–16799
Eppig JJ, Vivieros MM, Marin-Bivens C, De La Fuente R (2004) Regulation of mammalian oocyte maturation. In: Leung PCK, Adashi EY (eds) The ovary. Elsevier, Amsterdam
Ettlin RA, Armstrong JM, Buser S, Hennes U (1986) Retardation of spermiation following short-term treatment of rats with theobromine. Arch Toxicol Suppl 9:441–446
Ezzat AR, Gohary ZM (1994) Hormonal and histological effects of chronic caffeine administration on the pituitary-gonadal and pituitary-adrenocortical axes in male rabbits. Funct Dev Morphol 4:45–50
Fenster L, Quale C, Waller K, Windham GC, Elkin EP, Benowitz N, Swan SH (1999) Caffeine consumption and menstrual function. Am J Epidemiol 149:550–557
Florman HM, Corron ME, Kim TD, Babcock DF (1992) Activation of voltage-dependent calcium channels of mammalian sperm is required for zona pellucida-induced acrosomal exocytosis. Dev Biol 152:304–314
Fredholm BB (1995) Astra award lecture. Adenosine, adenosine receptors and the actions of caffeine. Pharmacol Toxicol 76:93–101
Fredholm B, Battig K, Holmen J, Nehlig A, Zvartau E (1999) Action of caffeine in the brain with special reference to factors that contribute to its wide spread use. Pharmacol Rev 51:83–133
Friedman L, Weinberger MA, Farber TM, Moreland FM, Peters EL, Gilmore CE, Khan MA (1979) Testicular atrophy and impaired spermatogenesis in rats fed high levels of the methylxanthines caffeine, theobromine, or theophylline. J Environ Pathol Toxicol 2:687–706
Funabashi H, Fujioka M, Kohchi M, Tateishi Y, Matsuoka N (2000) Collaborative work to evaluate toxicity on male reproductive organs by repeated dose studies in rats 22). Effects of 2- and 4-week administration of theobromine on the testis. J Toxicol Sci 25:211–221
Funahashi H (2003) Polyspermic penetration in porcine IVM-IVF systems. Reprod Fertil Dev 15:167–177
Funahashi H, Romar R (2004) Reduction of the incidence of polyspermic penetration into porcine oocytes by pretreatment of fresh spermatozoa with adenosine and a transient co-incubation of the gametes with caffeine. Reproduction 128:789–800
Funahashi H (2005) Effect of beta-mercaptoethanol during in vitro fertilization procedures on sperm penetration into porcine oocytes and the early development in vitro. Reproduction 130:889–898
Galantino-Homer HL, Visconti PE, Kopf GS (1997) Regulation of protein tyrosine phosphorylation during bovine sperm capacitation by a cyclic adenosine 3′5′-monophosphate-dependent pathway. Biol Reprod 56:707–719
Gans JH (1982) Dietary influences on theobromine-induced toxicity in rats. Toxicol Appl Pharmacol 63:312–320
Gans JH (1984) Comparative toxicities of dietary caffeine and theobromine in the rat. Food Chem Toxicol 22:365–369
Gougeon A (1996) Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev 17:121–155
Haider S, Chaube SK (1996) The in vitro effects of forskolin, IBMX and cyanoketone on meiotic maturation in follicle-enclosed catfish (Clarias batrachus) oocytes. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 115:117–123
Harayama H, Miyake M, Shidara O, Iwamoto E, Kato S (1998) Effects of calcium and bicarbonate on head-to-head agglutination in ejaculated boar spermatozoa. Reprod Fertil Dev 10:445–450
Harrison DA, Carr DW, Meizel S (2000) Involvement of protein kinase A and A kinase anchoring protein in the progesterone-initiated human sperm acrosome reaction. Biol Reprod 62:811–820
Heller CG, Clermont Y (1963) Spermatogenesis in man: an estimate of its duration. Science 140:184–186
Hirsh K (1984) Central nervous system pharmacology of the methylxanthines. In: Spiller GA (ed) The methylxanthine beverages and foods: chemistry, composition and health effects. Liss, New York
Hong CY, Chaput De Saintonge DM, Turner P (1981) The inhibitory action of procaine, (+) propranolol and (±) propranolol on human sperm motility: antagonism by caffeine. Br J Clin Pharmacol 12:751–753
Horner K, Livera G, Hinckley M, Trinh K, Storm D, Conti M (2003) Rodent oocytes express an active adenylyl cyclase required for meiotic arrest. Dev Biol 258:385–396
Iwamoto M, Onishi A, Fuchimoto D, Somfai T, Suzuki S, Yazaki S, Hashimoto M, Takeda K, Tagami T, Hanada H, Noguchi J, Kaneko H, Nagai T, Kikuchi K (2005) Effects of caffeine treatment on aged porcine oocytes: parthenogenetic activation ability, chromosome condensation and development to the blastocyst stage after somatic cell nuclear transfer. Zygote 13:335–345
Jaakma U, Zhang BR, Larsson B, Niwa K, Rodriguez-Martinez H (1997) Effects of sperm treatments on the in vitro development of bovine oocytes in semidefined and defined media. Theriogenology 48:711–720
Jiang CS, Kilfeather SA, Pearson RM, Turner P (1984) The stimulatory effects of caffeine, theophylline, lysine-theophylline and 3-isobutyl-l-methylxanthine on human sperm motility. Br J Clin Pharmacol 18:258–262
Jaiswal BS, Majumder GC (1998) Biochemical parameters regulating forward motility initiation in vitro in goat immature epididymal spermatozoa. Reprod Fertil Dev 10:299–307
Johnson EM, Christian MS (1984) When is a teratology study not an evaluation of teratogenicity? J Am Coll Toxicol 3:431–434
Kalinowski RR, Jaffe LA, Foltz KR, Giusti AF (2003) A receptor linked to a Gi-family G-protein functions in initiating oocyte maturation in starfish but not frogs. Dev Biol 253:139–149
Kanatsu-Shinohara M, Schultz RM, Kopf GS (2000) Acquisition of meiotic competence in mouse oocytes: absolute amounts of p34cdc2, cyclin B1, cdc25C, and wee1 in meiotically incompetent and competent oocytes. Biol Reprod 63:1610–1616
Kawahara M, Wakai T, Yamanaka K, Kobayashi J, Sugimura S, Shimizu T, Matsumoto H, Kim JH, Sasada H, Sato E (2005) Caffeine promotes premature chromosome condensation formation and in vitro development in porcine reconstructed embryos via a high level of maturation promoting factor activity during nuclear transfer. Reproduction 130:351–357
Kinney A, Kline J, Kelly A, Reuss ML, Levin B (2007) Smoking, alcohol and caffeine in relation to ovarian age during the reproductive years. Hum Reprod 22:1175–1185
Klonoff-Cohen H, Bleha J, Lam-Kruglick P (2002) A prospective study of the effects of female and male caffeine consumption on the reproductive endpoints of IVF and gamete intra-Fallopian transfer. Hum Reprod 17:1746–1754
Kopf GS, Lewis CA, Vacquier VD (1983a) Methylxanthines stimulate calcium transport and inhibit cyclic nucleotide phosphodiesterases in abalone sperm. Dev Biol 99:115–120
Kopf GS, Lewis CA, Vacquier VD (1983b) Regulation of abalone sperm cyclic AMP concentrations and the acrosome reaction by calcium and methylxanthines. Dev Biol 98:28–36
Kopf GS, Wilde MW (1990) Signal transduction processes leading to acrosomal exocytosis in mammalian spermatozoa. Trends Endocrinol Metab 1:362–368
Kwon DJ, Park CK, Yang BK, Cheong HT (2008) Control of nuclear remodelling and subsequent in vitro development and methylation status of porcine nuclear transfer embryos. Reproduction 135:649–656
Lachance C, Bailey JL, Leclerc P (2007) Expression of Hsp60 and Grp78 in the human endometrium and oviduct, and their effect on sperm functions. Hum Reprod 22:2606–2614
Laforest MF, Pouliot E, Guéguen L, Richard FJ (2005) Fundamental significance of specific phosphodiesterases in the control of spontaneous meiotic resumption in porcine oocytes. Mol Reprod Dev 70:361–372
Leclerc P, de Lamirande E, Gagnon C (1998) Interaction between Ca2+, cyclic 3′,5′ adenosine monophosphate, the superoxide anion, and tyrosine phosphorylation pathways in the regulation of human sperm capacitation. J Androl 19:434–443
Leclerc P, Goupil S (2002) Regulation of the human sperm tyrosine kinase c-yes. Activation by cyclic adenosine 3′,5′-monophosphate and inhibition by Ca(2+). Biol Reprod 67:301–307
Lee JH, Campbell KH (2006) Effects of enucleation and caffeine on maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK) activities in ovine oocytes used as recipient cytoplasts for nuclear transfer. Biol Reprod 74:691–698
Lee JH, Campbell KH (2008) Caffeine treatment prevents age-related changes in ovine oocytes and increases cell numbers in blastocysts produced by somatic cell nuclear transfer. Cloning Stem Cells 10:381–390
Liguori L, de Lamirande E, Minelli A, Gagnon C (2005) Various protein kinases regulate human sperm acrosome reaction and the associated phosphorylation of Tyr residues and of the Thr-Glu-Tyr motif. Mol Hum Reprod 11:211–221
Luria Y, Rubinstein S, Lax Y, Breitbart H (2002) Extracellular adenosine triphosphate stimulates acrosomal exocytosis in bovine spermatozoa via P2 purinoceptor. Biol Reprod 66:429–437
Maalouf WE, Lee JH, Campbell KH (2009) Effects of caffeine, cumulus cell removal and aging on polyspermy and embryo development on in vitro matured and fertilized ovine oocytes. Theriogenology 71:1083–1092
Magalhães ST, Guedes RN, Demuner AJ, Lima ER (2008) Effect of coffee alkaloids and phenolics on egg-laying by the coffee leaf miner Leucoptera coffeella. Bull Entomol Res 98:483–489
Mailhes JB, Young D, London SN (1996) Cytogenetic effects of caffeine during in vivo mouse oocyte maturation. Mutagenesis 11:395–399
Mahony MC, Gwathmey T (1999) Protein tyrosine phosphorylation during hyperactivated motility of cynomolgus monkey (Macaca fascicularis) spermatozoa. Biol Reprod 60:1239–1243
Mandel HG (2002) Update on caffeine consumption, disposition and action. Food ChemToxicol 40:1231–1234
McKusick VA (1988) Mendelian inheritance in man: catalogs of autosomal dominant, autosomal recessive, and x-linked phenotypes, 8th edn. Johns Hopkins University Press, Baltimore
Mehlmann LM, Jones TL, Jaffe LA (2002) Meiotic arrest in the mouse follicle maintained by a Gs protein in the oocyte. Science 297:1343–1345
Mehlmann LM, Saeki Y, Tanaka S, Brennan TJ, Evsikov AV, Pendola FL, Knowles BB, Eppig JJ, Jaffe LA (2004) The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes. Science 306:1947–1950
Mehlmann LM (2005) Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction 130:791–799
Metchat A, Akerfelt M, Bierkamp C, Delsinne V, Sistonen L, Alexandre H, Christians ES (2009) Mammalian heat shock factor 1 is essential for oocyte meiosis and directly regulates Hsp90alpha expression. J Biol Chem 284:9521–9528
Miao YL, Shi LH, Lei ZL, Huang JC, Yang JW, Ouyang YC, Sun QY, Chen DY (2007) Effects of caffeine on in vivo and in vitro oocyte maturation in mice. Theriogenology 68:640–645
Minelli A, Liguori L, Bellazza I, Mannucci R, Johansson B, Fredholm BB (2004) Involvement of A1 adenosine receptors in the acquisition of fertilizing capacity. J Androl 25:286–292
Morales P, Díaz ES, Kong M (2007) Proteasome activity and its relationship with protein phosphorylation during capacitation and acrosome reaction in human spermatozoa. Soc Reprod Fertil 65:269–273
Moreau R, Thérien I, Lazure C, Manjunath P (1998) Type II domains of BSP-A1/-A2 proteins: binding properties, lipid efflux, and sperm capacitation potential. Biochem Biophys Res Commun 246:148–154
Morikawa M, Seki M, Kume S, Endo T, Nishimura Y, Kano K, Naito K (2007) Meiotic resumption of porcine immature oocytes is prevented by ooplasmic Gsalpha functions. J Reprod Dev 53:1151–1157
Nawrot P, Jordan S, Eastwood J, Rotstein J, Hughenholtz A, Feeley M (2003) Effects of caffeine on human health. Food Addit Contam 20:1–30
Ozawa M, Nagai T, Somfai T, Nakai M, Maedomari N, Fahrudin M, Karja NW, Kaneko H, Noguchi J, Ohnuma K, Yoshimi N, Miyazaki H, Kikuchi K (2008) Comparison between effects of 3-isobutyl-1-methylxanthine and FSH on gap junctional communication, LH-receptor expression, and meiotic maturation of cumulus-oocyte complexes in pigs. Mol Reprod Dev 75:857–866
Peng XR, Hsueh AJ, LaPolt PS, Bjersing L, Ny T (1991) Localization of luteinizing hormone receptor messenger ribonucleic acid expression in ovarian cell types during follicle development and ovulation. Endocrinology 129:3200–3207
Pincus G, Enzmann EV (1935) The comparative behaviour of mammalian eggs in vivo and in vitro: I. The activation of ovarian eggs. J Exp Med 62:665–675
Pirino G, Wescott MP, Donovan PJ (2009) Protein kinase A regulates resumption of meiosis by phosphorylation of Cdc25B in mammalian oocytes. Cell Cycle 8:665–670
Pollard I, Williamson S, Magre S (1990) Influence of caffeine administered during pregnancy on the early differentiation of foetal rat ovaries and testes. J Dev Physiol 13:59–65
Pollard I, Locquet O, Solvar A, Magre S (2001) Effects of caffeine and its reactive metabolites theophylline and theobromine on the differentiating testis. Reprod Fertil Dev 13:435–441
Ramlau-Hansen CH, Thulstrup AM, Bonde JP, Olsen J, Bech BH (2008) Semen quality according to prenatal coffee and present caffeine exposure: two decades of follow-up of a pregnancy cohort. Hum Reprod 23:2799–2805
Richards JS, Russell DL, Ochsner S, Espey LL (2002) Ovulation: new dimensions and new regulators of the inflammatory-like response. Annu Rev Physiol 64:69–92
Salicioni AM, Platt MD, Wertheimer EV, Arcelay E, Allaire A, Sosnik J, Visconti PE (2007) Signalling pathways involved in sperm capacitation. Soc Reprod Fertil Suppl 65:245–259
Schultz RM, Montgomery RR, Belanoff JR (1983a) Regulation of mouse oocyte meiotic maturation: implication of a decrease in oocyte cAMP and protein dephosphorylation in commitment to resume meiosis. Dev Biol 97:264–273
Schultz RM, Montgomery RR, Ward-Bailey PF, Eppig JJ (1983b) Regulation of oocyte maturation in the mouse: possible roles of intercellular communication, cAMP, and testosterone. Dev Biol 95:294–304
Shimada M, Kawano N, Terada T (2002) Delay of nuclear maturation and reduction in developmental competence of pig oocytes after mineral oil overlay of in vitro maturation media. Reproduction 124:557–564
Shimada M, Nishibori M, Isobe N, Kawano N, Terada T (2003a) Luteinizing hormone receptor formation in cumulus cells surrounding porcine oocytes and its role during meiotic maturation of porcine oocytes. Biol Reprod 68:1142–1149
Shimada M, Ito J, Yamashita Y, Okazaki T, Isobe N (2003b) Phosphatidylinositol 3-kinase in cumulus cells is responsible for both suppression of spontaneous maturation and induction of gonadotropin-stimulated maturation of porcine oocytes. J Endocrinol 179:25–34
Si Y, Okuno M (1999) Role of tyrosine phosphorylation of flagellar proteins in hamster sperm hyperactivation. Biol Reprod 61:240–246
Somfai T, Kikuchi K, Onishi A, Iwamoto M, Fuchimoto D, Papp AB, Sato E, Nagai T (2003) Meiotic arrest maintained by cAMP during the initiation of maturation enhances meiotic potential and developmental competence and reduces polyspermy of IVM/IVF porcine oocytes. Zygote 11:199–206
Strandgaard C, Miller MG (1998) Germ cell apoptosis in rat testis after administration of 1,3-dinitrobenzene. Reprod Toxicol 12:97–103
Tengowski MW, Sutovsky P, Hedlund LW, Guyot DJ, Burkhardt JE, Thompson WE, Sutovsky M, Johnson GA (2005) Reproductive cytotoxicity is predicted by magnetic resonance microscopy and confirmed by ubiquitin-proteasome immunohistochemistry in a theophylline-induced model of rat testicular and epididymal toxicity. Microsc Microanal 11:300–312
Tengowski MW, Feng D, Sutovsky M, Sutovsky P (2007) Differential expression of genes encoding constitutive and inducible 20S proteasomal core subunits in the testis and epididymis of theophylline- or 1,3-dinitrobenzene-exposed rats. Biol Reprod 76:149–163
Thérien I, Bousquet D, Manjunath P (2001) Effect of seminal phospholipid-binding proteins and follicular fluid on bovine sperm capacitation. Biol Reprod 65:41–51
Thomas RE, Armstrong DT, Gilchrist RB (2002) Differential effects of specific phosphodiesterase isoenzyme inhibitors on bovine oocyte meiotic maturation. Dev Biol 244:215–225
Törnell J, Billig H, Hillensjo T (1990) Resumption of rat oocyte meiosis is paralleled by a decrease in guanosine 3′,5′-cyclic monophosphate (cGMP) and is inhibited by microinjection of cGMP. Acta Physiol Scand 139:511–517
Tulsiani DR, Abou-Haila A, Loeser CR, Pereira BM (1998) The biological and functional significance of the sperm acrosome and acrosomal enzymes in mammalian fertilization. Exp Cell Res 240:151–164
Tulsiani DR, Zeng HT, Abou-Haila A (2007) Biology of sperm capacitation: evidence for multiple signalling pathways. Soc Reprod Fertil Suppl 63:257–272
Thundathil J, de Lamirande E, Gagnon C (2002) Different signal pathways are involved during human sperm capacitation induced by biological and pharmacological agents. Mol Hum Reprod 8:811–816
Vivarelli E, Conti M, De Felici M, Siracusa G (1983) Meiotic resumption and intracellular cAMP levels in mouse oocytes treated with compounds which act on cAMP metabolism. Cell Differ 12:271–276
Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS (1995a) Capacitation of mouse spermatozoa: I. Correlation between the capacitation state and the protein tyrosine phosphorylation. Development 121:1129–1137
Visconti PE, Moore GD, Bailey JL, Leclerc P, Connors SA, Pan D, Olds-Clarke P, Kopf GS (1995b) Capacitation of mouse spermatozoa: II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pahway. Development 121:1139–1150
Visconti PE, Kopf GS (1998) Regulation of protein phosphorylation during sperm capacitation. Biol Reprod 59:1–6
Visconti PE, Galantino-Homer H, Ning X, Moore GD, Valenzuela JP, Jorgez CJ, Alvarez JG, Kopf GS (1999) Cholesterol efflux-mediated signal transduction in mammalian sperm. beta-cyclodextrins initiate transmembrane signaling leading to an increase in protein tyrosine phosphorylation and capacitation. J Biol Chem 274:3235–3242
Wang Y, Waller DP, Hikim AP, Russell LD (1992) Reproductive toxicity of theobromine and cocoa extract in male rats. Reprod Toxicol 6:347–353
Wang Y, Waller DP (1994) Theobromine toxicity on Sertoli cells and comparison with cocoa extract in male rats. Toxicol Lett 70:155–164
Wassarman PM (2009) Mammalian fertilization: the strange case of sperm protein 56. Bioessays 31:153–158
Webb RJ, Marshall F, Swann K, Carroll J (2000) Follicle-stimulating hormone induces a gap junction-dependent dynamic change in [cAMP] and protein kinase a in mammalian oocytes. Dev Biol 246:441–454
Weinberger MA, Friedman L, Farber TM, Moreland FM, Peters EL, Gilmore CE, Khan MA (1978) Testicular atrophy and impaired spermatogenesis in rats fed high levels of the methylxanthines caffeine, theobromine, or theophylline. J Environ Pathol Toxicol 1:669–688
Yanagimachi R (1994) Mammalian fertilization. In: Knobil E, Neill JD (eds) The physiology of reproduction. Raven, New York
Yeste M, Briz M, Pinart E, Sancho S, Garcia-Gil N, Badia E, Bassols J, Pruneda A, Bussalleu E, Casas I, Bonet S (2008) Hyaluronic acid delays boar sperm capacitation after 3 days of storage at 15 degrees C. Anim Reprod Sci 109:236–250
Yu L, Coelho J, Zhang X, Fu Y, Tillman A, Karaoz U, Fredholm BB, Weng Z, Chen JF (2009) Uncovering multiple molecular targets for caffeine by a drug target validation strategy of combined A2A receptor knockouts and microarray profiling. Physiol Genomics 37:199–210
Zeleznik AJ (2004) Dynamics of primate follicular growth: a physiological perspective. In: Leung PCK, Adashi EY (eds) The ovary, 2nd edn. Elsevier, Amsterdam
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2011 Springer Berlin Heidelberg
About this chapter
Cite this chapter
Minelli, A., Bellezza, I. (2011). Methylxanthines and Reproduction. In: Methylxanthines. Handbook of Experimental Pharmacology, vol 200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13443-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-13443-2_13
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13442-5
Online ISBN: 978-3-642-13443-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)
