Impacts of Methylxanthines and Adenosine Receptors on Neurodegeneration: Human and Experimental Studies

  • Jiang-Fan ChenEmail author
  • Yijuang Chern
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 200)


Neurodegenerative disorders are some of the most feared illnesses in modern society, with no effective treatments to slow or halt this neurodegeneration. Several decades after the earliest attempt to treat Parkinson’s disease using caffeine, tremendous amounts of information regarding the potential beneficial effect of caffeine as well as adenosine drugs on major neurodegenerative disorders have accumulated. In the first part of this review, we provide general background on the adenosine receptor signaling systems by which caffeine and methylxanthine modulate brain activity and their role in relationship to the development and treatment of neurodegenerative disorders. The demonstration of close interaction between adenosine receptor and other G protein coupled receptors and accessory proteins might offer distinct pharmacological properties from adenosine receptor monomers. This is followed by an outline of the major mechanism underlying neuroprotection against neurodegeneration offered by caffeine and adenosine receptor agents. In the second part, we discuss the current understanding of caffeine/methylxantheine and its major target adenosine receptors in development of individual neurodegenerative disorders, including stroke, traumatic brain injury Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and multiple sclerosis. The exciting findings to date include the specific in vivo functions of adenosine receptors revealed by genetic mouse models, the demonstration of a broad spectrum of neuroprotection by chronic treatment of caffeine and adenosine receptor ligands in animal models of neurodegenerative disorders, the encouraging development of several A2A receptor selective antagonists which are now in advanced clinical phase III trials for Parkinson’s disease. Importantly, increasing body of the human and experimental studies reveals encouraging evidence that regular human consumption of caffeine in fact may have several beneficial effects on neurodegenerative disorders, from motor stimulation to cognitive enhancement to potential neuroprotection. Thus, with regard to neurodegenerative disorders, these potential benefits of methylxanthines, caffeine in particular, strongly argue against the common practice by clinicians to discourage regular human consumption of caffeine in aging populations.


A1 receptor A2A receptor Alzheimer’s disease Adenosine receptors Huntington’s disease Caffeine Cognitive enhancer Multiple sclerosis Neuroprotection Parkinson’s disease Stroke Traumatic brain injury 


  1. Abbracchio MP, Fogliatto G, Paoletti AM, Rovati GE, Cattabeni F (1992) Prolonged in vitro exposure of rat brain slices to adenosine analogues: selective desensitization of adenosine A1 but not A2 receptors. Eur J Pharmacol 227:317–324PubMedCrossRefGoogle Scholar
  2. Adami M, Bertorelli R, Ferri N, Foddi MC, Ongini E (1995) Effects of repeated administration of selective adenosine A1 and A2A receptor agonists on pentylenetetrazole-induced convulsions in the rat. Eur J Pharmacol 294:383–389PubMedCrossRefGoogle Scholar
  3. Addicott MA, Yang LL, Peiffer AM, Burnett LR, Burdette JH, Chen MY, Hayasaka S, Kraft RA, Maldjian JA, Laurienti PJ (2009) The effect of daily caffeine use on cerebral blood flow: How much caffeine can we tolerate? Hum Brain Mapp 30:3102–3114PubMedCrossRefGoogle Scholar
  4. Adelmann M, Wood J, Benzel I, Fiori P, Lassmann H, Matthieu JM, Gardinier MV, Dornmair K, Linington C (1995) The N-terminal domain of the myelin oligodendrocyte glycoprotein (MOG) induces acute demyelinating experimental autoimmune encephalomyelitis in the Lewis rat. J Neuroimmunol 63:17–27PubMedCrossRefGoogle Scholar
  5. Aden U, Lindstrom K, Bona E, Hagberg H, Fredholm BB (1994) Changes in adenosine receptors in the neonatal rat brain following hypoxic ischemia. Brain Res Mol Brain Res 23:354–358PubMedCrossRefGoogle Scholar
  6. Aden U, Halldner L, Lagercrantz H, Dalmau I, Ledent C, Fredholm BB (2003) Aggravated brain damage after hypoxic ischemia in immature adenosine A2A knockout mice. Stroke 34:739–744PubMedCrossRefGoogle Scholar
  7. Ahlskog JE, Muenter MD (2001) Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord 16:448–458PubMedCrossRefGoogle Scholar
  8. Al Moutaery K, Al Deeb S, Ahmad Khan H, Tariq M (2003) Caffeine impairs short-term neurological outcome after concussive head injury in rats. Neurosurgery 53:704–711, discussion 711–712PubMedCrossRefGoogle Scholar
  9. Albasanz JL, Perez S, Barrachina M, Ferrer I, Martin M (2008) Up-regulation of adenosine receptors in the frontal cortex in Alzheimer's disease. Brain Pathol 18:211–219PubMedCrossRefGoogle Scholar
  10. Alfinito PD, Wang SP, Manzino L, Rijhsinghani S, Zeevalk GD, Sonsalla PK (2003) Adenosinergic protection of dopaminergic and GABAergic neurons against mitochondrial inhibition through receptors located in the substantia nigra and striatum, respectively. J Neurosci 23:10982–10987PubMedGoogle Scholar
  11. Alloul K, Sauriol L, Kennedy W, Laurier C, Tessier G, Novosel S, Contandriopoulos A (1998) Alzheimer's disease: a review of the disease, its epidemiology and economic impact. Arch Gerontol Geriatr 27:189–221PubMedCrossRefGoogle Scholar
  12. Arendash GW, Schleif W, Rezai-Zadeh K, Jackson EK, Zacharia LC, Cracchiolo JR, Shippy D, Tan J (2006) Caffeine protects Alzheimer's mice against cognitive impairment and reduces brain beta-amyloid production. Neuroscience 142:941–952PubMedCrossRefGoogle Scholar
  13. Arendash GW, Mori T, Cao C, Mamcarz M, Runfeldt M, Dickson A, Rezai-Zadeh K, Tane J, Citron BA, Lin X, Echeverria V, Potter H (2009) Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer's disease mice. J Alzheimers Dis 17:661–680PubMedGoogle Scholar
  14. Aronowski J, Strong R, Shirzadi A, Grotta JC (2003) Ethanol plus caffeine (caffeinol) for treatment of ischemic stroke: preclinical experience. Stroke 34:1246–1251PubMedCrossRefGoogle Scholar
  15. Ascherio A, Zhang SM, Hernan MA, Kawachi I, Colditz GA, Speizer FE, Willett WC (2001) Prospective study of caffeine consumption and risk of Parkinson's disease in men and women. Ann Neurol 50:56–63PubMedCrossRefGoogle Scholar
  16. Azdad K, Gall D, Woods AS, Ledent C, Ferre S, Schiffmann SN (2009) Dopamine D2 and adenosine A2A receptors regulate NMDA-mediated excitation in accumbens neurons through A2A-D2 receptor heteromerization. Neuropsychopharmacology 34:972–986PubMedCrossRefGoogle Scholar
  17. Bara-Jimenez W, Sherzai A, Dimitrova T, Favit A, Bibbiani F, Gillespie M, Morris MJ, Mouradian MM, Chase TN (2003) Adenosine A(2A) receptor antagonist treatment of Parkinson's disease. Neurology 61:293–296PubMedCrossRefGoogle Scholar
  18. Bastia E, Xu YH, Scibelli AC, Day YJ, Linden J, Chen JF, Schwarzschild MA (2005) A crucial role for forebrain adenosine A(2A) receptors in amphetamine sensitization. Neuropsychopharmacology 30:891–900PubMedCrossRefGoogle Scholar
  19. Belayev L, Khoutorova L, Zhang Y, Belayev A, Zhao W, Busto R, Ginsberg MD (2004) Caffeinol confers cortical but not subcortical neuroprotection after transient focal cerebral ischemia in rats. Brain Res 1008:278–283PubMedCrossRefGoogle Scholar
  20. Bell MJ, Kochanek PM, Carcillo JA, Mi Z, Schiding JK, Wisniewski SR, Clark RS, Dixon CE, Marion DW, Jackson E (1998) Interstitial adenosine, inosine, and hypoxanthine are increased after experimental traumatic brain injury in the rat. J Neurotrauma 15:163–170PubMedCrossRefGoogle Scholar
  21. Bennett EJ, Shaler TA, Woodman B, Ryu K-Y, Zaitseva TS, Becker CH, Bates GP, Schulman H, Kopito RR (2007) Global changes to the ubiquitin system in Huntington's disease. Nature 448:704–708PubMedCrossRefGoogle Scholar
  22. Berger T, Weerth S, Kojima K, Linington C, Wekerle H, Lassmann H (1997) Experimental autoimmune encephalomyelitis: the antigen specificity of T lymphocytes determines the topography of lesions in the central and peripheral nervous system. Lab Invest 76:355–364PubMedGoogle Scholar
  23. Bertram L, Tanzi RE (2008) Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 9:768–778PubMedCrossRefGoogle Scholar
  24. Bibbiani F, Oh JD, Petzer JP, Castagnoli N Jr, Chen J-F, Schwarzschild MA, Chase T (2002) A2A receptor antagonist prevents the development of dopamine agonist-induced motor complications in primate and rodent models of Parkinson's disease. In: Annual meeting of Society for Neuroscience. Orlando, FLGoogle Scholar
  25. Bjorkqvist M et al (2008) A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease. J Exp Med 205:1869–1877PubMedCrossRefGoogle Scholar
  26. Blum D, Gall D, Cuvelier L, Schiffmann SN (2001) Topological analysis of striatal lesions induced by 3-nitropropionic acid in the Lewis rat. Neuroreport 12:1769–1772PubMedCrossRefGoogle Scholar
  27. Blum D, Hourez R, Galas MC, Popoli P, Schiffmann SN (2003a) Adenosine receptors and Huntington's disease: implications for pathogenesis and therapeutics. Lancet Neurol 2:366–374PubMedCrossRefGoogle Scholar
  28. Blum D, Gall D, Galas MC, d'Alcantara P, Bantubungi K, Schiffmann SN (2002) The adenosine A1 receptor agonist adenosine amine congener exerts a neuroprotective effect against the development of striatal lesions and motor impairments in the 3-nitropropionic acid model of neurotoxicity. J Neurosci 22:9122–9133PubMedGoogle Scholar
  29. Blum D, Galas MC, Pintor A, Brouillet E, Ledent C, Muller CE, Bantubungi K, Galluzzo M, Gall D, Cuvelier L, Rolland AS, Popoli P, Schiffmann SN (2003b) A dual role of adenosine A2A receptors in 3-nitropropionic acid-induced striatal lesions: implications for the neuroprotective potential of A2A antagonists. J Neurosci 23:5361–5369PubMedGoogle Scholar
  30. Boison D (2006) Adenosine kinase, epilepsy and stroke: mechanisms and therapies. Trends Pharmacol Sci 27:652–658PubMedCrossRefGoogle Scholar
  31. Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18:351–357PubMedCrossRefGoogle Scholar
  32. Britton M, de Faire U, Helmers C, Miah K, Rane A (1980) Lack of effect of theophylline on the outcome of acute cerebral infarction. Acta Neurol Scand 62:116–123PubMedCrossRefGoogle Scholar
  33. Broderick JP, Viscoli CM, Brott T, Kernan WN, Brass LM, Feldmann E, Morgenstern LB, Wilterdink JL, Horwitz RI (2003) Major risk factors for aneurysmal subarachnoid hemorrhage in the young are modifiable. Stroke 34:1375–1381PubMedCrossRefGoogle Scholar
  34. Brodie C, Blumberg PM, Jacobson KA (1998) Activation of the A2A adenosine receptor inhibits nitric oxide production in glial cells. FEBS Lett 429:139–142PubMedCrossRefGoogle Scholar
  35. Burgueno J, Blake DJ, Benson MA, Tinsley CL, Esapa CT, Canela EI, Penela P, Mallol J, Mayor F Jr, Lluis C, Franco R, Ciruela F (2003) The adenosine A2A receptor interacts with the actin-binding protein alpha-actinin. J Biol Chem 278:37545–37552PubMedCrossRefGoogle Scholar
  36. Cabello N, Gandia J, Bertarelli DC, Watanabe M, Lluis C, Franco R, Ferre S, Lujan R, Ciruela F (2009) Metabotropic glutamate type 5, dopamine D2 and adenosine A2a receptors form higher-order oligomers in living cells. J Neurochem 109:1497–1507PubMedCrossRefGoogle Scholar
  37. Cadden IS, Partovi N, Yoshida EM (2007) Review article: possible beneficial effects of coffee on liver disease and function. Aliment Pharmacol Ther 26:1–8PubMedCrossRefGoogle Scholar
  38. Cao C, Cirrito JR, Lin X, Wang L, Verges DK, Dickson A, Mamcarz M, Zhang C, Mori T, Arendash GW, Holtzman DM, Potter H (2009) Caffeine suppresses amyloid-beta levels in plasma and brain of Alzheimer's disease transgenic mice. J Alzheimers Dis 17:681–697PubMedGoogle Scholar
  39. Carriba P, Ortiz O, Patkar K, Justinova Z, Stroik J, Themann A, Muller C, Woods AS, Hope BT, Ciruela F, Casado V, Canela EI, Lluis C, Goldberg SR, Moratalla R, Franco R, Ferre S (2007) Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology 32:2249–2259PubMedCrossRefGoogle Scholar
  40. Cassada DC, Tribble CG, Young JS, Gangemi JJ, Gohari AR, Butler PD, Rieger JM, Kron IL, Linden J, Kern JA (2002a) Adenosine A2A analogue improves neurologic outcome after spinal cord trauma in the rabbit. J Trauma 53:225–229, discussion 229–231PubMedCrossRefGoogle Scholar
  41. Cassada DC, Tribble CG, Long SM, Laubach VE, Kaza AK, Linden J, Nguyen BN, Rieger JM, Fiser SM, Kron IL, Kern JA (2002b) Adenosine A2A analogue ATL-146e reduces systemic tumor necrosing factor-alpha and spinal cord capillary platelet-endothelial cell adhesion molecule-1 expression after spinal cord ischemia. J Vasc Surg 35:994–998PubMedCrossRefGoogle Scholar
  42. Chaudhuri KR, Healy DG, Schapira AH (2006) Non-motor symptoms of Parkinson's disease: diagnosis and management. Lancet Neurol 5:235–245PubMedCrossRefGoogle Scholar
  43. Chen GQ, Chen YY, Wang XS, Wu SZ, Yang HM, Xu HQ, He JC, Wang XT, Chen JF, Zheng RY (2010) Chronic caffeine treatment attenuates experimental autoimmune encephalomyelitis induced by guinea pig spinal cord homogenates in Wistar rats. Brain Res 1309:116–125PubMedCrossRefGoogle Scholar
  44. Chen JF (2003) The adenosine A(2A) receptor as an attractive target for Parkinson's disease treatment. Drug News Perspect 16:597–604PubMedCrossRefGoogle Scholar
  45. Chen JF, Huang Z, Ma J, Zhu J, Moratalla R, Standaert D, Moskowitz MA, Fink JS, Schwarzschild MA (1999) A(2A) adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J Neurosci 19:9192–9200PubMedGoogle Scholar
  46. Chen JF, Sonsalla PK, Pedata F, Melani A, Domenici MR, Popoli P, Geiger J, Lopes LV, de Mendonca A (2007) Adenosine A2A receptors and brain injury: broad spectrum of neuroprotection, multifaceted actions and "fine tuning" modulation. Prog Neurobiol 83:310–331PubMedCrossRefGoogle Scholar
  47. Chen JF, Xu K, Petzer JP, Staal R, Xu YH, Beilstein M, Sonsalla PK, Castagnoli K, Castagnoli N Jr, Schwarzschild MA (2001) Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson's disease. J Neurosci 21:RC143PubMedGoogle Scholar
  48. Chen X, Lan X, Roche I, Liu R, Geiger JD (2008a) Caffeine protects against MPTP-induced blood-brain barrier dysfunction in mouse striatum. J Neurochem 107:1147–1157PubMedGoogle Scholar
  49. Chen X, Gawryluk JW, Wagener JF, Ghribi O, Geiger JD (2008b) Caffeine blocks disruption of blood brain barrier in a rabbit model of Alzheimer's disease. J Neuroinflammation 5:12PubMedCrossRefGoogle Scholar
  50. Cheng HC, Shih HM, Chern Y (2002) Essential role of cAMP-response element-binding protein activation by A2A adenosine receptors in rescuing the nerve growth factor-induced neurite outgrowth impaired by blockage of the MAPK cascade. J Biol Chem 277:33930–33942PubMedCrossRefGoogle Scholar
  51. Chern Y, Lai HL, Fong JC, Liang Y (1993) Multiple mechanisms for desensitization of A2a adenosine receptor-mediated cAMP elevation in rat pheochromocytoma PC12 cells. Mol Pharmacol 44:950–958PubMedGoogle Scholar
  52. Chiang M-C, Chen H-M, Lee Y-H, Chang H-H, Wu Y-C, Soong B-W, Chen C-M, Wu Y-R, Liu C-S, Niu D-M, Wu J-Y, Chen Y-T, Chern Y (2007) Dysregulation of C/EBP{alpha} by mutant Huntingtin causes the urea cycle deficiency in Huntington's disease. Hum Mol Genet 16:483–498PubMedCrossRefGoogle Scholar
  53. Chiang MC, Lee YC, Huang CL, Chern Y (2005) cAMP-response element-binding protein contributes to suppression of the A2A adenosine receptor promoter by mutant Huntingtin with expanded polyglutamine residues. J Biol Chem 280:14331–14340PubMedCrossRefGoogle Scholar
  54. Chiang MC, Chen HM, Lai HL, Chen HW, Chou SY, Chen CM, Tsai FJ, Chern Y (2009) The A2A adenosine receptor rescues the urea cycle deficiency of Huntington's disease by enhancing the activity of the ubiquitin-proteasome system. Hum Mol Genet 18:2929–2942PubMedCrossRefGoogle Scholar
  55. Chiaruttini C, Vicario A, Li Z, Baj G, Braiuca P, Wu Y, Lee FS, Gardossi L, Baraban JM, Tongiorgi E (2009) Dendritic trafficking of BDNF mRNA is mediated by translin and blocked by the G196A (Val66Met) mutation. Proc Natl Acad Sci USA 106:16481–16486PubMedCrossRefGoogle Scholar
  56. Choi OH, Shamim MT, Padgett WL, Daly JW (1988) Caffeine and theophylline analogues: correlation of behavioral effects with activity as adenosine receptor antagonists and as phosphodiesterase inhibitors. Life Sci 43:387–398PubMedCrossRefGoogle Scholar
  57. Chou SY, Lee YC, Chen HM, Chiang MC, Lai HL, Chang HH, Wu YC, Sun CN, Chien CL, Lin YS, Wang SC, Tung YY, Chang C, Chern Y (2005) CGS21680 attenuates symptoms of Huntington's disease in a transgenic mouse model. J Neurochem 93:310–320PubMedCrossRefGoogle Scholar
  58. Ciruela F, Casado V, Rodrigues RJ, Lujan R, Burgueno J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortes A, Canela EI, Lopez-Gimenez JF, Milligan G, Lluis C, Cunha RA, Ferre S, Franco R (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J Neurosci 26:2080–2087PubMedCrossRefGoogle Scholar
  59. Clark RS, Carcillo JA, Kochanek PM, Obrist WD, Jackson EK, Mi Z, Wisneiwski SR, Bell MJ, Marion DW (1997) Cerebrospinal fluid adenosine concentration and uncoupling of cerebral blood flow and oxidative metabolism after severe head injury in humans. Neurosurgery 41:1284–1292, discussion 1292–1283PubMedCrossRefGoogle Scholar
  60. Coelho JE, Rebola N, Fragata I, Ribeiro JA, de Mendonca A, Cunha RA (2006) Hypoxia-induced desensitization and internalization of adenosine A1 receptors in the rat hippocampus. Neuroscience 138:1195–1203PubMedCrossRefGoogle Scholar
  61. Corsi C, Melani A, Bianchi L, Pedata F (2000) Striatal A2A adenosine receptor antagonism differentially modifies striatal glutamate outflow in vivo in young and aged rats. Neuroreport 11:2591–2595PubMedCrossRefGoogle Scholar
  62. Cronstein BN, Kramer SB, Weissmann G, Hirschhorn R (1983) Adenosine: a physiological modulator of superoxide anion generation by human neutrophils. J Exp Med 158:1160–1177PubMedCrossRefGoogle Scholar
  63. Cronstein BN, Daguma L, Nichols D, Hutchison AJ, Williams M (1990) The adenosine/neutrophil paradox resolved: human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit O2 generation, respectively. J Clin Invest 85:1150–1157PubMedCrossRefGoogle Scholar
  64. Cunha GM, Canas PM, Melo CS, Hockemeyer J, Muller CE, Oliveira CR, Cunha RA (2008) Adenosine A2A receptor blockade prevents memory dysfunction caused by beta-amyloid peptides but not by scopolamine or MK-801. Exp Neurol 210:776–781PubMedCrossRefGoogle Scholar
  65. Cunha GMA, Canas PM, Chen JF, Oliveira CR, Cunha RA (2006) Blockade of adenosine A2A receptors prevents – amiloid (Aβ1-42)-induced synaptotoxicity and memory impairment in rodents. Purinergic Signal 2:135Google Scholar
  66. Cunha RA, Ribeiro JA (2000) Adenosine A2A receptor facilitation of synaptic transmission in the CA1 area of the rat hippocampus requires protein kinase C but not protein kinase A activation. Neurosci Lett 289:127–130PubMedCrossRefGoogle Scholar
  67. Dall'lgna OP, Porciuncula LO, Souza DO, Cunha RA, Lara DR (2003) Neuroprotection by caffeine and adenosine A(2A) receptor blockade of beta-amyloid neurotoxicity. Br J Pharmacol 138:1207–1209PubMedCrossRefGoogle Scholar
  68. Daly JW (2007) Caffeine analogs: biomedical impact. Cell Mol Life Sci 64:2153–2169PubMedCrossRefGoogle Scholar
  69. Daly JW, Shi D, Nikodijevic O, Jacobson KA (1999) The role of adenosine receptors in the central action of caffeine. In: Gupta BS, Gupta U (eds) Caffeine and behavior-current views and research trends. CRC, Boca Raton, pp 1–16Google Scholar
  70. Dash PK, Moore AN, Moody MR, Treadwell R, Felix JL, Clifton GL (2004) Post-trauma administration of caffeine plus ethanol reduces contusion volume and improves working memory in rats. J Neurotrauma 21:1573–1583PubMedCrossRefGoogle Scholar
  71. Dauer W, Przedborski S (2003) Parkinson's disease: mechanisms and models. Neuron 39:889–909PubMedCrossRefGoogle Scholar
  72. Day YJ, Marshall MA, Huang L, McDuffie MJ, Okusa MD, Linden J (2004) Protection from ischemic liver injury by activation of A2A adenosine receptors during reperfusion: inhibition of chemokine induction. Am J Physiol Gastrointest Liver Physiol 286:G285–G293PubMedCrossRefGoogle Scholar
  73. Day YJ, Huang L, McDuffie MJ, Rosin DL, Ye H, Chen JF, Schwarzschild MA, Fink JS, Linden J, Okusa MD (2003) Renal protection from ischemia mediated by A2A adenosine receptors on bone marrow-derived cells. J Clin Invest 112:883–891PubMedGoogle Scholar
  74. de Mendonça A, Sebastião AM, Ribeiro JA (2000) Adenosine: does it have a neuroprotective role after all? Brain Res Brain Res Rev 33:258–274PubMedCrossRefGoogle Scholar
  75. Delle Donne KT, Sonsalla PK (1994) Protection against methamphetamine-induced neurotoxicity to neostriatal dopaminergic neurons by adenosine receptor activation. J Pharmacol Exp Ther 271:1320–1326PubMedGoogle Scholar
  76. Dhaenens CM et al (2009) A genetic variation in the ADORA2A gene modifies age at onset in Huntington's disease. Neurobiol Dis 35:474–476PubMedCrossRefGoogle Scholar
  77. Diaz-Cabiale Z, Vivo M, Del Arco A, O'Connor WT, Harte MK, Muller CE, Martinez E, Popoli P, Fuxe K, Ferre S (2002) Metabotropic glutamate mGlu5 receptor-mediated modulation of the ventral striopallidal GABA pathway in rats. Interactions with adenosine A(2A) and dopamine D(2) receptors. Neurosci Lett 324:154–158PubMedCrossRefGoogle Scholar
  78. Diogenes MJ, Fernandes CC, Sebastiao AM, Ribeiro JA (2004) Activation of adenosine A2A receptor facilitates brain-derived neurotrophic factor modulation of synaptic transmission in hippocampal slices. J Neurosci 24:2905–2913PubMedCrossRefGoogle Scholar
  79. Djousse L, Knowlton B, Cupples LA, Marder K, Shoulson I, Myers RH (2002) Weight loss in early stage of Huntington's disease. Neurology 59:1325–1330PubMedCrossRefGoogle Scholar
  80. Domenici MR, Scattoni ML, Martire A, Lastoria G, Potenza RL, Borioni A, Venerosi A, Calamandrei G, Popoli P (2007) Behavioral and electrophysiological effects of the adenosine A2A receptor antagonist SCH 58261 in R6/2 Huntington's disease mice. Neurobiol Dis 28:197–205PubMedCrossRefGoogle Scholar
  81. Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, Ravina BM, Schifitto G, Siderowf A, Tanner CM (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68:384–386PubMedCrossRefGoogle Scholar
  82. Duarte JM, Carvalho RA, Cunha RA, Gruetter R (2009) Caffeine consumption attenuates neurochemical modifications in the hippocampus of streptozotocin-induced diabetic rats. J Neurochem 111:368–379PubMedCrossRefGoogle Scholar
  83. Dunwiddie TV (1980) Endogenously released adenosine regulates excitability in the in vitro hippocampus. Epilepsia 21:541–548PubMedCrossRefGoogle Scholar
  84. Dunwiddie TV, Fredholm BB (1997) Adenosine neuromodulation. In: Jacobson KA, Jarvis MF (eds) Purinergic approaches in experimental therapeutics. Wiley-Liss, New York, pp 359–382Google Scholar
  85. Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55PubMedCrossRefGoogle Scholar
  86. Dunwiddie TV, Hoffer BJ, Fredholm BB (1981) Alkylxanthines elevate hippocampal excitability. Evidence for a role of endogenous adenosine. Naunyn Schmiedebergs Arch Pharmacol 316:326–330PubMedCrossRefGoogle Scholar
  87. El Yacoubi M, Ledent C, Menard JF, Parmentier M, Costentin J, Vaugeois JM (2000) The stimulant effects of caffeine on locomotor behaviour in mice are mediated through its blockade of adenosine A(2A) receptors. Br J Pharmacol 129:1465–1473PubMedCrossRefGoogle Scholar
  88. Eskelinen MH, Ngandu T, Tuomilehto J, Soininen H, Kivipelto M (2009) Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. J Alzheimers Dis 16:85–91PubMedGoogle Scholar
  89. Feldmann E, Broderick JP, Kernan WN, Viscoli CM, Brass LM, Brott T, Morgenstern LB, Wilterdink JL, Horwitz RI (2005) Major risk factors for intracerebral hemorrhage in the young are modifiable. Stroke 36:1881–1885PubMedCrossRefGoogle Scholar
  90. Ferre S, O'Connor WT, Fuxe K, Ungerstedt U (1993) The striopallidal neuron: a main locus for adenosine-dopamine interactions in the brain. J Neurosci 13:5402–5406PubMedGoogle Scholar
  91. Ferre S, Goldberg SR, Lluis C, Franco R (2009) Looking for the role of cannabinoid receptor heteromers in striatal function. Neuropharmacology 56(Suppl 1):226–234PubMedCrossRefGoogle Scholar
  92. Ferre S, von Euler G, Johansson B, Fredholm BB, Fuxe K (1991) Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc Natl Acad Sci USA 88:7238–7241PubMedCrossRefGoogle Scholar
  93. Ferre S, Fuxe K, von Euler G, Johansson B, Fredholm BB (1992) Adenosine-dopamine interactions in the brain. Neuroscience 51:501–512PubMedCrossRefGoogle Scholar
  94. Ferre S, Fredholm BB, Morelli M, Popoli P, Fuxe K (1997) Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 20:482–487PubMedCrossRefGoogle Scholar
  95. Fiebich BL, Biber K, Lieb K, van Calker D, Berger M, Bauer J, Gebicke-Haerter PJ (1996) Cyclooxygenase-2 expression in rat microglia is induced by adenosine A2a-receptors. Glia 18:152–160PubMedCrossRefGoogle Scholar
  96. Fink JS, Kalda A, Ryu H, Stack EC, Schwarzschild MA, Chen JF, Ferrante RJ (2004) Genetic and pharmacological inactivation of the adenosine A2A receptor attenuates 3-nitropropionic acid-induced striatal damage. J Neurochem 88:538–544PubMedCrossRefGoogle Scholar
  97. Flajolet M, Wang Z, Futter M, Shen W, Nuangchamnong N, Bendor J, Wallach I, Nairn AC, Surmeier DJ, Greengard P (2008) FGF acts as a co-transmitter through adenosine A(2A) receptor to regulate synaptic plasticity. Nat Neurosci 11:1402–1409PubMedCrossRefGoogle Scholar
  98. Fontinha BM, Diogenes MJ, Ribeiro JA, Sebastiao AM (2008) Enhancement of long-term potentiation by brain-derived neurotrophic factor requires adenosine A2A receptor activation by endogenous adenosine. Neuropharmacology 54:924–933PubMedCrossRefGoogle Scholar
  99. Fredduzzi S, Moratalla R, Monopoli A, Cuellar B, Xu K, Ongini E, Impagnatiello F, Schwarzschild MA, Chen JF (2002) Persistent behavioral sensitization to chronic L-DOPA requires A2A adenosine receptors. J Neurosci 22:1054–1062PubMedGoogle Scholar
  100. Fredholm BB (1980) Are methylxanthine effects due to antagonism of endogenous adenosine? Trends Pharmacol Sci 1:129–132CrossRefGoogle Scholar
  101. Fredholm BB (1995) Astra Award Lecture. Adenosine, adenosine receptors and the actions of caffeine. Pharmacol Toxicol 76:93–101PubMedCrossRefGoogle Scholar
  102. Fredholm BB, Irenius E, Kull B, Schulte G (2001) Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem Pharmacol 61:443–448PubMedCrossRefGoogle Scholar
  103. Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133PubMedGoogle Scholar
  104. Fukumitsu N, Ishii K, Kimura Y, Oda K, Hashimoto M, Suzuki M, Ishiwata K (2008) Adenosine A(1) receptors using 8-dicyclopropylmethyl-1-[(11)C]methyl-3-propylxanthine PET in Alzheimer's disease. Ann Nucl Med 22:841–847PubMedCrossRefGoogle Scholar
  105. Gao Y, Phillis JW (1994) CGS 15943, an adenosine A2 receptor antagonist, reduces cerebral ischemic injury in the Mongolian gerbil. Life Sci 55:PL61–PL65PubMedCrossRefGoogle Scholar
  106. Gao ZG, Jacobson KA (2004) Partial agonists for A(3) adenosine receptors. Curr Top Med Chem 4:855–862PubMedCrossRefGoogle Scholar
  107. Geismar P, Marquardsen J, Sylvest J (1976) Controlled trial of intravenous aminophylline in acute cerebral infarction. Acta Neurol Scand 54:173–180PubMedCrossRefGoogle Scholar
  108. Geraets L, Moonen HJ, Wouters EF, Bast A, Hageman GJ (2006) Caffeine metabolites are inhibitors of the nuclear enzyme poly(ADP-ribose)polymerase-1 at physiological concentrations. Biochem Pharmacol 72:902–910PubMedCrossRefGoogle Scholar
  109. Gines S, Hillion J, Torvinen M, Le Crom S, Casado V, Canela EI, Rondin S, Lew JY, Watson S, Zoli M, Agnati LF, Verniera P, Lluis C, Ferre S, Fuxe K, Franco R (2000) Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci USA 97:8606–8611PubMedCrossRefGoogle Scholar
  110. Glass M, Dragunow M, Faull RL (2000) The pattern of neurodegeneration in Huntington's disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington's disease. Neuroscience 97:505–519PubMedCrossRefGoogle Scholar
  111. Goetz CG, Poewe W, Rascol O, Sampaio C (2005) Evidence-based medical review update: pharmacological and surgical treatments of Parkinson's disease: 2001 to 2004. Mov Disord 20:523–539PubMedCrossRefGoogle Scholar
  112. Gomes CA, Vaz SH, Ribeiro JA, Sebastiao AM (2006) Glial cell line-derived neurotrophic factor (GDNF) enhances dopamine release from striatal nerve endings in an adenosine A2A receptor-dependent manner. Brain Res 1113:129–136PubMedCrossRefGoogle Scholar
  113. Gordi T, Frohna P, Sun HL, Wolff A, Belardinelli L, Lieu H (2006) A population pharmacokinetic/pharmacodynamic analysis of regadenoson, an adenosine A2A-receptor agonist, in healthy male volunteers. Clin Pharmacokinet 45:1201–1212PubMedCrossRefGoogle Scholar
  114. Graham DI, McIntosh TK, Maxwell WL, Nicoll JA (2000) Recent advances in neurotrauma. J Neuropathol Exp Neurol 59:641–651PubMedGoogle Scholar
  115. Greenland S (1993) A meta-analysis of coffee, myocardial infarction, and coronary death. Epidemiology 4:366–374PubMedCrossRefGoogle Scholar
  116. Grobbee DE, Rimm EB, Giovannucci E, Colditz G, Stampfer M, Willett W (1990) Coffee, caffeine, and cardiovascular disease in men. N Engl J Med 323:1026–1032PubMedCrossRefGoogle Scholar
  117. Grondin R, Bedard PJ, Hadj Tahar A, Gregoire L, Mori A, Kase H (1999) Antiparkinsonian effect of a new selective adenosine A2A receptor antagonist in MPTP-treated monkeys. Neurology 52:1673–1677PubMedCrossRefGoogle Scholar
  118. Gsandtner I, Charalambous C, Stefan E, Ogris E, Freissmuth M, Zezula J (2005) Heterotrimeric G protein-independent signaling of a G protein-coupled receptor. Direct binding of ARNO/cytohesin-2 to the carboxyl terminus of the A2A adenosine receptor is necessary for sustained activation of the ERK/MAP kinase pathway. J Biol Chem 280:31898–31905PubMedCrossRefGoogle Scholar
  119. Gubitz AK, Widdowson L, Kurokawa M, Kirkpatrick KA, Richardson PJ (1996) Dual signalling by the adenosine A2a receptor involves activation of both N- and P-type calcium channels by different G proteins and protein kinases in the same striatal nerve terminals. J Neurochem 67:374–381PubMedCrossRefGoogle Scholar
  120. Guerreiro S, Toulorge D, Hirsch E, Marien M, Sokoloff P, Michel PP (2008) Paraxanthine, the primary metabolite of caffeine, provides protection against dopaminergic cell death via stimulation of ryanodine receptor channels. Mol Pharmacol 74:980–989PubMedCrossRefGoogle Scholar
  121. Hafler DA (2004) Multiple sclerosis. J Clin Invest 113:788–794PubMedGoogle Scholar
  122. Hagberg H, Andersson P, Kjellmer I, Thiringer K, Thordstein M (1987) Extracellular overflow of glutamate, aspartate, GABA and taurine in the cortex and basal ganglia of fetal lambs during hypoxia-ischemia. Neurosci Lett 78:311–317PubMedCrossRefGoogle Scholar
  123. Hameleers PA, Van Boxtel MP, Hogervorst E, Riedel WJ, Houx PJ, Buntinx F, Jolles J (2000) Habitual caffeine consumption and its relation to memory, attention, planning capacity and psychomotor performance across multiple age groups. Hum Psychopharmacol 15:573–581PubMedCrossRefGoogle Scholar
  124. Hardy J, Gwinn-Hardy K (1998) Genetic classification of primary neurodegenerative disease. Science 282:1075–1079PubMedCrossRefGoogle Scholar
  125. Hasko G, Kuhel DG, Chen JF, Schwarzschild MA, Deitch EA, Mabley JG, Marton A, Szabo C (2000) Adenosine inhibits IL-12 and TNF-[alpha] production via adenosine A2a receptor-dependent and independent mechanisms. FASEB J 14:2065–2074PubMedCrossRefGoogle Scholar
  126. Hauser RA, Hubble JP, Truong DD (2003) Randomized trial of the adenosine A(2A) receptor antagonist istradefylline in advanced PD. Neurology 61:297–303PubMedCrossRefGoogle Scholar
  127. Heron A, Lasbennes F, Seylaz J (1993) Adenosine modulation of amino acid release in rat hippocampus during ischemia and veratridine depolarization. Brain Res 608:27–32PubMedCrossRefGoogle Scholar
  128. Heron A, Lekieffre D, Le Peillet E, Lasbennes F, Seylaz J, Plotkine M, Boulu RG (1994) Effects of an A1 adenosine receptor agonist on the neurochemical, behavioral and histological consequences of ischemia. Brain Res 641:217–224PubMedCrossRefGoogle Scholar
  129. Higashi H, Meno JR, Marwaha AS, Winn HR (2002) Hippocampal injury and neurobehavioral deficits following hyperglycemic cerebral ischemia: effect of theophylline and ZM 241385. J Neurosurg 96:117–126PubMedCrossRefGoogle Scholar
  130. Higdon JV, Frei B (2006) Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr 46:101–123PubMedCrossRefGoogle Scholar
  131. Hillion J, Canals M, Torvinen M, Casado V, Scott R, Terasmaa A, Hansson A, Watson S, Olah ME, Mallol J, Canela EI, Zoli M, Agnati LF, Ibanez CF, Lluis C, Franco R, Ferre S, Fuxe K (2002) Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J Biol Chem 277:18091–18097PubMedCrossRefGoogle Scholar
  132. Hoane MR, Kaplan SA, Ellis AL (2006) The effects of nicotinamide on apoptosis and blood-brain barrier breakdown following traumatic brain injury. Brain Res 1125:185–193PubMedCrossRefGoogle Scholar
  133. Hong CJ, Liu HC, Liu TY, Liao DL, Tsai SJ (2005) Association studies of the adenosine A2a receptor (1976T > C) genetic polymorphism in Parkinson's disease and schizophrenia. J Neural Transm 112:1503–1510PubMedCrossRefGoogle Scholar
  134. Hoyte L, Kaur J, Buchan AM (2004) Lost in translation: taking neuroprotection from animal models to clinical trials. Exp Neurol 188:200–204PubMedCrossRefGoogle Scholar
  135. Hsu SS, Meno JR, Zhou JG, Gordon EL, Winn HR (1991) Influence of hyperglycemia on cerebral adenosine production during ischemia and reperfusion. Am J Physiol 261:H398–H403PubMedGoogle Scholar
  136. Hu Y, Russek SJ (2008) BDNF and the diseased nervous system: a delicate balance between adaptive and pathological processes of gene regulation. J Neurochem 105:1–17PubMedCrossRefGoogle Scholar
  137. Huang NK, Lin YW, Huang CL, Messing RO, Chern Y (2001) Activation of protein kinase A and atypical protein kinase C by A(2A) adenosine receptors antagonizes apoptosis due to serum deprivation in PC12 cells. J Biol Chem 276:13838–13846PubMedGoogle Scholar
  138. Hunter JM, Lesort M, Johnson GV (2007) Ubiquitin-proteasome system alterations in a striatal cell model of Huntington's disease. J Neurosci Res 85:1774–1788PubMedCrossRefGoogle Scholar
  139. Ikeda K, Kurokawa M, Aoyama S, Kuwana Y (2002) Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson's disease. J Neurochem 80:262–270PubMedCrossRefGoogle Scholar
  140. Ivanov AA, Jacobson KA (2008) Molecular modeling of a PAMAM-CGS21680 dendrimer bound to an A2A adenosine receptor homodimer. Bioorg Med Chem Lett 18:4312–4315PubMedCrossRefGoogle Scholar
  141. Jaarsma D, Sebens JB, Korf J (1991) Reduction of adenosine A1-receptors in the perforant pathway terminal zone in Alzheimer hippocampus. Neurosci Lett 121:111–114PubMedCrossRefGoogle Scholar
  142. James JE (2004) Critical review of dietary caffeine and blood pressure: a relationship that should be taken more seriously. Psychosom Med 66:63–71PubMedCrossRefGoogle Scholar
  143. Jankovic J (2008) Are adenosine antagonists, such as istradefylline, caffeine, and chocolate, useful in the treatment of Parkinson's disease? Ann Neurol 63:267–269PubMedCrossRefGoogle Scholar
  144. Jansen KL, Faull RL, Dragunow M, Synek BL (1990) Alzheimer's disease: changes in hippocampal N-methyl-D-aspartate, quisqualate, neurotensin, adenosine, benzodiazepine, serotonin and opioid receptors–an autoradiographic study. Neuroscience 39:613–627PubMedCrossRefGoogle Scholar
  145. Jarvis MJ (1993) Does caffeine intake enhance absolute levels of cognitive performance? Psychopharmacology (Berl) 110:45–52CrossRefGoogle Scholar
  146. Jenner P, Mori A, Hauser R, Morelli M, Fredholm BB, Chen JF (2009) Adenosine, adenosine A 2A antagonists, and Parkinson's disease. Parkinsonism Relat Disord 15:406–413PubMedCrossRefGoogle Scholar
  147. Johnson-Kozlow M, Kritz-Silverstein D, Barrett-Connor E, Morton D (2002) Coffee consumption and cognitive function among older adults. Am J Epidemiol 156:842–850PubMedCrossRefGoogle Scholar
  148. Johnston JB, Silva C, Gonzalez G, Holden J, Warren KG, Metz LM, Power C (2001) Diminished adenosine A1 receptor expression on macrophages in brain and blood of patients with multiple sclerosis. Ann Neurol 49:650–658PubMedCrossRefGoogle Scholar
  149. Jones FS, Jing J, Stonehouse AH, Stevens A, Edelman GM (2008) Caffeine stimulates cytochrome oxidase expression and activity in the striatum in a sexually dimorphic manner. Mol Pharmacol 74:673–684PubMedCrossRefGoogle Scholar
  150. Justinova Z, Ferre S, Barnes C, Wertheim CE, Pappas LA, Goldberg SR, Le Foll B (2009) Effects of chronic caffeine exposure on adenosinergic modulation of the discriminative-stimulus effects of nicotine, methamphetamine, and cocaine in rats. Psychopharmacology 203:355–367PubMedCrossRefGoogle Scholar
  151. Kachroo A, Orlando LR, Grandy DK, Chen JF, Young AB, Schwarzschild MA (2005) Interactions between metabotropic glutamate 5 and adenosine A2A receptors in normal and parkinsonian mice. J Neurosci 25:10414–10419PubMedCrossRefGoogle Scholar
  152. Kamiya T, Saitoh O, Yoshioka K, Nakata H (2003) Oligomerization of adenosine A2A and dopamine D2 receptors in living cells. Biochem Biophys Res Commun 306:544–549PubMedCrossRefGoogle Scholar
  153. Kanda T, Tashiro T, Kuwana Y, Jenner P (1998a) Adenosine A2A receptors modify motor function in MPTP-treated common marmosets. Neuroreport 9:2857–2860PubMedCrossRefGoogle Scholar
  154. Kanda T, Jackson MJ, Smith LA, Pearce RK, Nakamura J, Kase H, Kuwana Y, Jenner P (1998b) Adenosine A2A antagonist: a novel antiparkinsonian agent that does not provoke dyskinesia in parkinsonian monkeys. Ann Neurol 43:507–513PubMedCrossRefGoogle Scholar
  155. Kanda T, Jackson MJ, Smith LA, Pearce RK, Nakamura J, Kase H, Kuwana Y, Jenner P (2000) Combined use of the adenosine A(2A) antagonist KW-6002 with L-DOPA or with selective D1 or D2 dopamine agonists increases antiparkinsonian activity but not dyskinesia in MPTP-treated monkeys. Exp Neurol 162:321–327PubMedCrossRefGoogle Scholar
  156. Kang SH, Lee YA, Won SJ, Rhee KH, Gwag BJ (2002) Caffeine-induced neuronal death in neonatal rat brain and cortical cell cultures. Neuroreport 13:1945–1950PubMedCrossRefGoogle Scholar
  157. Keegan BM, Noseworthy JH (2002) Multiple sclerosis. Annu Rev Med 53:285–302PubMedCrossRefGoogle Scholar
  158. Kim Y, Hechler B, Klutz AM, Gachet C, Jacobson KA (2008) Toward multivalent signaling across G protein-coupled receptors from poly(amidoamine) dendrimers. Bioconjug Chem 19:406–411PubMedCrossRefGoogle Scholar
  159. Kittner B, Rossner M, Rother M (1997) Clinical trials in dementia with propentofylline. Ann N Y Acad Sci 826:307–316PubMedCrossRefGoogle Scholar
  160. Kochanek PM, Vagni VA, Janesko KL, Washington CB, Crumrine PK, Garman RH, Jenkins LW, Clark RS, Homanics GE, Dixon CE, Schnermann J, Jackson EK (2006) Adenosine A1 receptor knockout mice develop lethal status epilepticus after experimental traumatic brain injury. J Cereb Blood Flow Metab 26:565–575PubMedCrossRefGoogle Scholar
  161. Kortekaas R, Leenders KL, van Oostrom JC, Vaalburg W, Bart J, Willemsen AT, Hendrikse NH (2005) Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 57:176–179PubMedCrossRefGoogle Scholar
  162. Lang AE, Lozano AM (1998a) Parkinson's disease. Second of two parts. N Engl J Med 339:1130–1143PubMedCrossRefGoogle Scholar
  163. Lang AE, Lozano AM (1998b) Parkinson's disease. First of two parts. N Engl J Med 339:1044–1053PubMedCrossRefGoogle Scholar
  164. Lang AE, Obeso JA (2004) Challenges in Parkinson's disease: restoration of the nigrostriatal dopamine system is not enough. Lancet Neurol 3:309–316PubMedCrossRefGoogle Scholar
  165. Lapchak PA, Song D, Wei J, Zivin JA (2004) Pharmacology of caffeinol in embolized rabbits: clinical rating scores and intracerebral hemorrhage incidence. Exp Neurol 188:286–291PubMedCrossRefGoogle Scholar
  166. Lapchak PA, Araujo DM, Pakola S, Song D, Wei J, Zivin JA (2002) Microplasmin: a novel thrombolytic that improves behavioral outcome after embolic strokes in rabbits. Stroke 33:2279–2284PubMedCrossRefGoogle Scholar
  167. Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484PubMedCrossRefGoogle Scholar
  168. Latour LL, Kang DW, Ezzeddine MA, Chalela JA, Warach S (2004) Early blood-brain barrier disruption in human focal brain ischemia. Ann Neurol 56:468–477PubMedCrossRefGoogle Scholar
  169. Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, Vanderhaeghen JJ, Costentin J, Heath JK, Vassart G, Parmentier M (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 388:674–678PubMedCrossRefGoogle Scholar
  170. Lee FS, Chao MV (2001) Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci USA 98:3555–3560PubMedCrossRefGoogle Scholar
  171. Leker RR, Shohami E (2002) Cerebral ischemia and trauma-different etiologies yet similar mechanisms: neuroprotective opportunities. Brain Res Brain Res Rev 39:55–73PubMedCrossRefGoogle Scholar
  172. Li SH, Li XJ (2004) Huntingtin-protein interactions and the pathogenesis of Huntington's disease. Trends Genet 20:146–154PubMedCrossRefGoogle Scholar
  173. Li W, Dai S, An J, Xiong R, Li P, Chen X, Zhao Y, Liu P, Wang H, Zhu P, Chen J, Zhou Y (2009) Genetic inactivation of adenosine A2A receptors attenuates acute traumatic brain injury in the mouse cortical impact model. Exp Neurol 215:69–76PubMedCrossRefGoogle Scholar
  174. Li W, Dai S, An J, Li P, Chen X, Xiong R, Liu P, Wang H, Zhao Y, Zhu M, Liu X, Zhu P, Chen JF, Zhou Y (2008) Chronic but not acute treatment with caffeine attenuates traumatic brain injury in the mouse cortical impact model. Neuroscience 151:1198–1207PubMedCrossRefGoogle Scholar
  175. Li XX, Nomura T, Aihara H, Nishizaki T (2001) Adenosine enhances glial glutamate efflux via A2a adenosine receptors. Life Sci 68:1343–1350PubMedCrossRefGoogle Scholar
  176. Li Y, Oskouian RJ, Day YJ, Rieger JM, Liu L, Kern JA, Linden J (2006) Mouse spinal cord compression injury is reduced by either activation of the adenosine A2A receptor on bone marrow-derived cells or deletion of the A2A receptor on non-bone marrow-derived cells. Neuroscience 141:2029–2039PubMedCrossRefGoogle Scholar
  177. Lindsay J, Laurin D, Verreault R, Hebert R, Helliwell B, Hill GB, McDowell I (2002) Risk factors for Alzheimer's disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol 156:445–453PubMedCrossRefGoogle Scholar
  178. Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4:399–415PubMedCrossRefGoogle Scholar
  179. Lopes LV, Cunha RA, Kull B, Fredholm BB, Ribeiro JA (2002) Adenosine A(2A) receptor facilitation of hippocampal synaptic transmission is dependent on tonic A(1) receptor inhibition. Neuroscience 112:319–329PubMedCrossRefGoogle Scholar
  180. Lopez-Diego RS, Weiner HL (2008) Novel therapeutic strategies for multiple sclerosis–a multifaceted adversary. Nat Rev Drug Discov 7:909–925PubMedCrossRefGoogle Scholar
  181. Lundblad M, Vaudano E, Cenci MA (2003) Cellular and behavioural effects of the adenosine A2a receptor antagonist KW-6002 in a rat model of l-DOPA-induced dyskinesia. J Neurochem 84:1398–1410PubMedCrossRefGoogle Scholar
  182. Lupica CR, Berman RF, Jarvis MF (1991) Chronic theophylline treatment increases adenosine A1, but not A2, receptor binding in the rat brain: an autoradiographic study. Synapse 9:95–102PubMedCrossRefGoogle Scholar
  183. Maglione V, Cannella M, Martino T, De Blasi A, Frati L, Squitieri F (2006) The platelet maximum number of A2A-receptor binding sites (Bmax) linearly correlates with age at onset and CAG repeat expansion in Huntington's disease patients with predominant chorea. Neurosci Lett 393:27–30PubMedCrossRefGoogle Scholar
  184. Maia L, de Mendonca A (2002) Does caffeine intake protect from Alzheimer's disease? Eur J Neurol 9:377–382PubMedCrossRefGoogle Scholar
  185. Marangos PJ, Paul SM, Parma AM, Goodwin FK, Syapin P, Skolnick P (1979) Purinergic inhibition of diazepam binding to rat brain (in vitro). Life Sci 24:851–857PubMedCrossRefGoogle Scholar
  186. Marchi M, Raiteri L, Risso F, Vallarino A, Bonfanti A, Monopoli A, Ongini E, Raiteri M (2002) Effects of adenosine A1 and A2A receptor activation on the evoked release of glutamate from rat cerebrocortical synaptosomes. Br J Pharmacol 136:434–440PubMedCrossRefGoogle Scholar
  187. Marcusson J, Rother M, Kittner B, Rossner M, Smith RJ, Babic T, Folnegovic-Smalc V, Moller HJ, Labs KH (1997) A 12-month, randomized, placebo-controlled trial of propentofylline (HWA 285) in patients with dementia according to DSM III-R. The European Propentofylline Study Group. Dement Geriatr Cogn Disord 8:320–328PubMedCrossRefGoogle Scholar
  188. Marshall LF (2000) Head injury: recent past, present, and future. Neurosurgery 47:546–561PubMedGoogle Scholar
  189. Martin-Schild S, Hallevi H, Shaltoni H, Barreto AD, Gonzales NR, Aronowski J, Savitz SI, Grotta JC (2009) Combined neuroprotective modalities coupled with thrombolysis in acute ischemic stroke: a pilot study of caffeinol and mild hypothermia. J Stroke Cerebrovasc Dis 18:86–96PubMedCrossRefGoogle Scholar
  190. Martin JB, Gusella JF (1986) Huntington's disease. Pathogenesis and management. N Engl J Med 315:1267–1276PubMedCrossRefGoogle Scholar
  191. Matsumoto K, Graf R, Rosner G, Shimada N, Heiss WD (1992) Flow thresholds for extracellular purine catabolite elevation in cat focal ischemia. Brain Res 579:309–314PubMedCrossRefGoogle Scholar
  192. Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1:120–129PubMedCrossRefGoogle Scholar
  193. Mattson MP (2004) Pathways towards and away from Alzheimer's disease. Nature 430:631–639PubMedCrossRefGoogle Scholar
  194. Mayne M, Shepel PN, Jiang Y, Geiger JD, Power C (1999) Dysregulation of adenosine A1 receptor-mediated cytokine expression in peripheral blood mononuclear cells from multiple sclerosis patients. Ann Neurol 45:633–639PubMedCrossRefGoogle Scholar
  195. Mayne M, Fotheringham J, Yan HJ, Power C, Del Bigio MR, Peeling J, Geiger JD (2001) Adenosine A2A receptor activation reduces proinflammatory events and decreases cell death following intracerebral hemorrhage. Ann Neurol 49:727–735PubMedCrossRefGoogle Scholar
  196. McPherson PS, Kim YK, Valdivia H, Knudson CM, Takekura H, Franzini-Armstrong C, Coronado R, Campbell KP (1991) The brain ryanodine receptor: a caffeine-sensitive calcium release channel. Neuron 7:17–25PubMedCrossRefGoogle Scholar
  197. Meinl E, Krumbholz M, Hohlfeld R (2006) B lineage cells in the inflammatory central nervous system environment: migration, maintenance, local antibody production, and therapeutic modulation. Ann Neurol 59:880–892PubMedCrossRefGoogle Scholar
  198. Melani A, Gianfriddo M, Vannucchi MG, Cipriani S, Baraldi PG, Giovannini MG, Pedata F (2006) The selective A2A receptor antagonist SCH 58261 protects from neurological deficit, brain damage and activation of p38 MAPK in rat focal cerebral ischemia. Brain Res 1073–1074:470–480PubMedCrossRefGoogle Scholar
  199. Melani A, Cipriani S, Vannucchi MG, Nosi D, Donati C, Bruni P, Giovannini MG, Pedata F (2009) Selective adenosine A2a receptor antagonism reduces JNK activation in oligodendrocytes after cerebral ischaemia. Brain 132:1480–1495PubMedCrossRefGoogle Scholar
  200. Melani A, Pantoni L, Bordoni F, Gianfriddo M, Bianchi L, Vannucchi MG, Bertorelli R, Monopoli A, Pedata F (2003) The selective A2A receptor antagonist SCH 58261 reduces striatal transmitter outflow, turning behavior and ischemic brain damage induced by permanent focal ischemia in the rat. Brain Res 959:243–250PubMedCrossRefGoogle Scholar
  201. Mestre T, Ferreira J, Coelho MM, Rosa M, Sampaio C (2009) Therapeutic interventions for disease progression in Huntington's disease. Cochrane Database Syst Rev CD006455Google Scholar
  202. Mielke R, Kessler J, Szelies B, Herholz K, Wienhard K, Heiss WD (1996a) Vascular dementia: perfusional and metabolic disturbances and effects of therapy. J Neural Transm Suppl 47:183–191PubMedCrossRefGoogle Scholar
  203. Mielke R, Kittner B, Ghaemi M, Kessler J, Szelies B, Herholz K, Heiss WD (1996b) Propentofylline improves regional cerebral glucose metabolism and neuropsychologic performance in vascular dementia. J Neurol Sci 141:59–64PubMedCrossRefGoogle Scholar
  204. Mihm MJ, Amann DM, Schanbacher BL, Altschuld RA, Bauer JA, Hoyt KR (2007) Cardiac dysfunction in the R6/2 mouse model of Huntington's disease. Neurobiol Dis 25:297–308PubMedCrossRefGoogle Scholar
  205. Mills JH, Thompson LF, Mueller C, Waickman AT, Jalkanen S, Niemela J, Airas L, Bynoe MS (2008) CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 105:9325–9330PubMedCrossRefGoogle Scholar
  206. Milojevic T, Reiterer V, Stefan E, Korkhov VM, Dorostkar MM, Ducza E, Ogris E, Boehm S, Freissmuth M, Nanoff C (2006) The ubiquitin-specific protease Usp4 regulates the cell surface level of the A2A receptor. Mol Pharmacol 69:1083–1094PubMedCrossRefGoogle Scholar
  207. Minagar A, Alexander JS (2003) Blood-brain barrier disruption in multiple sclerosis. Mult Scler 9:540–549PubMedCrossRefGoogle Scholar
  208. Mingote S, Pereira M, Farrar AM, McLaughlin PJ, Salamone JD (2008) Systemic administration of the adenosine A(2A) agonist CGS 21680 induces sedation at doses that suppress lever pressing and food intake. Pharmacol Biochem Behav 89:345–351PubMedCrossRefGoogle Scholar
  209. Monopoli A, Lozza G, Forlani A, Mattavelli A, Ongini E (1998) Blockade of adenosine A2A receptors by SCH 58261 results in neuroprotective effects in cerebral ischaemia in rats. Neuroreport 9:3955–3959PubMedCrossRefGoogle Scholar
  210. Moppett IK (2007) Traumatic brain injury: assessment, resuscitation and early management. Br J Anaesth 99:18–31PubMedCrossRefGoogle Scholar
  211. Morelli M, Di Paolo T, Wardas J, Calon F, Xiao D, Schwarzschild MA (2007) Role of adenosine A2A receptors in parkinsonian motor impairment and l-DOPA-induced motor complications. Prog Neurobiol 83:293–309PubMedCrossRefGoogle Scholar
  212. Navarro G, Carriba P, Gandia J, Ciruela F, Casado V, Cortes A, Mallol J, Canela EI, Lluis C, Franco R (2008) Detection of heteromers formed by cannabinoid CB1, dopamine D2, and adenosine A2A G-protein-coupled receptors by combining bimolecular fluorescence complementation and bioluminescence energy transfer. ScientificWorldJournal 8:1088–1097PubMedCrossRefGoogle Scholar
  213. Navarro G, Aymerich MS, Marcellino D, Cortes A, Casado V, Mallol J, Canela EI, Agnati L, Woods AS, Fuxe K, Lluis C, Lanciego JL, Ferre S, Franco R (2009) Interactions between calmodulin, adenosine A2A, and dopamine D2 receptors. J Biol Chem 284:28058–28068PubMedCrossRefGoogle Scholar
  214. Nehlig A, Daval JL, Debry G (1992) Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Brain Res Rev 17:139–170PubMedCrossRefGoogle Scholar
  215. Ngai AC, Coyne EF, Meno JR, West GA, Winn HR (2001) Receptor subtypes mediating adenosine-induced dilation of cerebral arterioles. Am J Physiol Heart Circ Physiol 280:H2329–H2335PubMedGoogle Scholar
  216. Nikbakht MR, Stone TW (2001) Suppression of presynaptic responses to adenosine by activation of NMDA receptors. Eur J Pharmacol 427:13–25PubMedCrossRefGoogle Scholar
  217. Nishizaki T, Nagai K, Nomura T, Tada H, Kanno T, Tozaki H, Li XX, Kondoh T, Kodama N, Takahashi E, Sakai N, Tanaka K, Saito N (2002) A new neuromodulatory pathway with a glial contribution mediated via A(2a) adenosine receptors. Glia 39:133–147PubMedCrossRefGoogle Scholar
  218. Norenberg W, Wirkner K, Illes P (1997) Effect of adenosine and some of its structural analogues on the conductance of NMDA receptor channels in a subset of rat neostriatal neurones. Br J Pharmacol 122:71–80PubMedCrossRefGoogle Scholar
  219. Norenberg W, Wirkner K, Assmann H, Richter M, Illes P (1998) Adenosine A2A receptors inhibit the conductance of NMDA receptor channels in rat neostriatal neurons. Amino Acids 14:33–39PubMedCrossRefGoogle Scholar
  220. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952PubMedCrossRefGoogle Scholar
  221. O'Regan MH, Simpson RE, Perkins LM, Phillis JW (1992) The selective A2 adenosine receptor agonist CGS 21680 enhances excitatory transmitter amino acid release from the ischemic rat cerebral cortex. Neurosci Lett 138:169–172PubMedCrossRefGoogle Scholar
  222. Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920PubMedCrossRefGoogle Scholar
  223. Oishi Y, Huang ZL, Fredholm BB, Urade Y, Hayaishi O (2008) Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A1 receptors and promotes non-rapid eye movement sleep. Proc Natl Acad Sci USA 105:19992–19997PubMedCrossRefGoogle Scholar
  224. Olanow CW (2004) The scientific basis for the current treatment of Parkinson's disease. Annu Rev Med 55:41–60PubMedCrossRefGoogle Scholar
  225. Olsson T, Cronberg T, Rytter A, Asztely F, Fredholm BB, Smith ML, Wieloch T (2004) Deletion of the adenosine A1 receptor gene does not alter neuronal damage following ischaemia in vivo or in vitro. Eur J Neurosci 20:1197–1204PubMedCrossRefGoogle Scholar
  226. Oztas E, Xu K, Kalda A, Irrizary M, Schwarzschild MA, Chen J-F (2002) Caffeine attenuates MPTP-induced loss of dopaminergic neurons in substantial nigra in mice. In: Annual meeting of Society for Neuroscience. Orlando, FLGoogle Scholar
  227. Pedata F, Corsi C, Melani A, Bordoni F, Latini S (2001) Adenosine extracellular brain concentrations and role of A2A receptors in ischemia. Ann N Y Acad Sci 939:74–84PubMedCrossRefGoogle Scholar
  228. Perrin RJ, Fagan AM, Holtzman DM (2009) Multimodal techniques for diagnosis and prognosis of Alzheimer's disease. Nature 461:916–922PubMedCrossRefGoogle Scholar
  229. Phan J, Hickey MA, Zhang P, Chesselet MF, Reue K (2009) Adipose tissue dysfunction tracks disease progression in two Huntington's disease mouse models. Hum Mol Genet 18:1006–1016PubMedCrossRefGoogle Scholar
  230. Phillis JW (1995) The effects of selective A1 and A2a adenosine receptor antagonists on cerebral ischemic injury in the gerbil. Brain Res 705:79–84PubMedCrossRefGoogle Scholar
  231. Pierri M, Vaudano E, Sager T, Englund U (2005) KW-6002 protects from MPTP induced dopaminergic toxicity in the mouse. Neuropharmacology 48:517–524PubMedCrossRefGoogle Scholar
  232. Pignataro G, Simon RP, Boison D (2007) Transgenic overexpression of adenosine kinase aggravates cell death in ischemia. J Cereb Blood Flow Metab 27:1–5PubMedCrossRefGoogle Scholar
  233. Pincomb GA, Lovallo WR, Passey RB, Wilson MF (1988) Effect of behavior state on caffeine's ability to alter blood pressure. Am J Cardiol 61:798–802PubMedCrossRefGoogle Scholar
  234. Piriyawat P, Labiche LA, Burgin WS, Aronowski JA, Grotta JC (2003) Pilot dose-escalation study of caffeine plus ethanol (caffeinol) in acute ischemic stroke. Stroke 34:1242–1245PubMedCrossRefGoogle Scholar
  235. Popoli P, Blum D, Domenici MR, Burnouf S, Chern Y (2008) A critical evaluation of adenosine A2A receptors as potentially “druggable” targets in Huntington's disease. Curr Pharm Des 14:1500–1511PubMedCrossRefGoogle Scholar
  236. Popoli P, Frank C, Tebano MT, Potenza RL, Pintor A, Domenici MR, Nazzicone V, Pezzola A, Reggio R (2003) Modulation of glutamate release and excitotoxicity by adenosine A2A receptors. Neurology 61:S69–S71PubMedCrossRefGoogle Scholar
  237. Popoli P, Pintor A, Domenici MR, Frank C, Tebano MT, Pezzola A, Scarchilli L, Quarta D, Reggio R, Malchiodi-Albedi F, Falchi M, Massotti M (2002) Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. J Neurosci 22:1967–1975PubMedGoogle Scholar
  238. Prediger RD, Takahashi RN (2005) Modulation of short-term social memory in rats by adenosine A1 and A(2A) receptors. Neurosci Lett 376:160–165PubMedCrossRefGoogle Scholar
  239. Prediger RD, Batista LC, Takahashi RN (2005) Caffeine reverses age-related deficits in olfactory discrimination and social recognition memory in rats. Involvement of adenosine A1 and A2A receptors. Neurobiol Aging 26:957–964PubMedCrossRefGoogle Scholar
  240. Prineas JW, Wright RG (1978) Macrophages, lymphocytes, and plasma cells in the perivascular compartment in chronic multiple sclerosis. Lab Invest 38:409–421PubMedGoogle Scholar
  241. Ragab S, Lunt M, Birch A, Thomas P, Jenkinson DF (2004) Caffeine reduces cerebral blood flow in patients recovering from an ischaemic stroke. Age Ageing 33:299–303PubMedCrossRefGoogle Scholar
  242. Raine CS (1984) Biology of disease. Analysis of autoimmune demyelination: its impact upon multiple sclerosis. Lab Invest 50:608–635PubMedGoogle Scholar
  243. Rainnie DG, Grunze HC, McCarley RW, Greene RW (1994) Adenosine inhibition of mesopontine cholinergic neurons: implications for EEG arousal. Science 263:689–692PubMedCrossRefGoogle Scholar
  244. Rascol O, Goetz C, Koller W, Poewe W, Sampaio C (2002) Treatment interventions for Parkinson's disease: an evidence based assessment. Lancet 359:1589–1598PubMedCrossRefGoogle Scholar
  245. Reece TB, Davis JD, Okonkwo DO, Maxey TS, Ellman PI, Li X, Linden J, Tribble CG, Kron IL, Kern JA (2004) Adenosine A2A analogue reduces long-term neurologic injury after blunt spinal trauma. J Surg Res 121:130–134PubMedCrossRefGoogle Scholar
  246. Ribchester RR, Thomson D, Wood NI, Hinks T, Gillingwater TH, Wishart TM, Court FA, Morton AJ (2004) Progressive abnormalities in skeletal muscle and neuromuscular junctions of transgenic mice expressing the Huntington's disease mutation. Eur J Neurosci 20:3092–3114PubMedCrossRefGoogle Scholar
  247. Richardson PJ, Kase H, Jenner PG (1997) Adenosine A2A receptor antagonists as new agents for the treatment of Parkinson's disease. Trends Pharmacol Sci 18:338–344PubMedGoogle Scholar
  248. Richardson PJ, Gubitz AK, Freeman TC, Dixon AK (1999) Adenosine receptor antagonists and Parkinson's disease: actions of the A2A receptor in the striatum. Adv Neurol 80:111–119PubMedGoogle Scholar
  249. Ritchie K, Carrière I, Portet F, de Mendonca A, Dartigues JF, Rouaud O, Barberger-Gateau P, Ancelin ML (2007) The neuro-protective effects of caffeine: a prospective population study (the Three City Study). Neurology 69:536–545PubMedCrossRefGoogle Scholar
  250. Rite I, Machado A, Cano J, Venero JL (2007) Blood-brain barrier disruption induces in vivo degeneration of nigral dopaminergic neurons. J Neurochem 101:1567–1582PubMedCrossRefGoogle Scholar
  251. Robertson CL, Bell MJ, Kochanek PM, Adelson PD, Ruppel RA, Carcillo JA, Wisniewski SR, Mi Z, Janesko KL, Clark RS, Marion DW, Graham SH, Jackson EK (2001) Increased adenosine in cerebrospinal fluid after severe traumatic brain injury in infants and children: association with severity of injury and excitotoxicity. Crit Care Med 29:2287–2293PubMedCrossRefGoogle Scholar
  252. Robledo P, Ursu G, Mahy N (1999) Effects of adenosine and gamma-aminobutyric acid A receptor antagonists on N-methyl-D-aspartate induced neurotoxicity in the rat hippocampus. Hippocampus 9:527–533PubMedCrossRefGoogle Scholar
  253. Rosin DL, Hettinger BD, Lee A, Linden J (2003) Anatomy of adenosine A2A receptors in brain: morphological substrates for integration of striatal function. Neurology 61:S12–S18PubMedCrossRefGoogle Scholar
  254. Ross GW, Abbott RD, Petrovitch H, Morens DM, Grandinetti A, Tung KH, Tanner CM, Masaki KH, Blanchette PL, Curb JD, Popper JS, White LR (2000) Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 283:2674–2679PubMedCrossRefGoogle Scholar
  255. Rudolphi KA, Schubert P, Parkinson FE, Fredholm BB (1992) Neuroprotective role of adenosine in cerebral ischaemia. Trends Pharmacol Sci 13:439–445PubMedCrossRefGoogle Scholar
  256. Rutland-Brown W, Langlois JA, Thomas KE, Xi YL (2006) Incidence of traumatic brain injury in the United States, 2003. J Head Trauma Rehabil 21:544–548PubMedCrossRefGoogle Scholar
  257. Ryu H, Rosas HD, Hersch SM, Ferrante RJ (2005) The therapeutic role of creatine in Huntington's disease. Pharmacol Ther 108:193–207PubMedCrossRefGoogle Scholar
  258. Saaksjarvi K, Knekt P, Rissanen H, Laaksonen MA, Reunanen A, Mannisto S (2007) Prospective study of coffee consumption and risk of Parkinson's disease. Eur J Clin Nutr 62:908–915PubMedCrossRefGoogle Scholar
  259. Sachse KT, Jackson EK, Wisniewski SR, Gillespie DG, Puccio AM, Clark RS, Dixon CE, Kochanek PM (2008) Increases in cerebrospinal fluid caffeine concentration are associated with favorable outcome after severe traumatic brain injury in humans. J Cereb Blood Flow Metab 28:395–401PubMedCrossRefGoogle Scholar
  260. Salamone JD, Farrar AM, Font L, Patel V, Schlar DE, Nunes EJ, Collins LE, Sager TN (2009) Differential actions of adenosine A1 and A2A antagonists on the effort-related effects of dopamine D2 antagonism. Behav Brain Res 201:216–222PubMedCrossRefGoogle Scholar
  261. Sandoli D, Chiu PJ, Chintala M, Dionisotti S, Ongini E (1994) In vivo and ex vivo effects of adenosine A1 and A2 receptor agonists on platelet aggregation in the rabbit. Eur J Pharmacol 259:43–49PubMedCrossRefGoogle Scholar
  262. Sathasivam K, Hobbs C, Turmaine M, Mangiarini L, Mahal A, Bertaux F, Wanker EE, Doherty P, Davies SW, Bates GP (1999) Formation of polyglutamine inclusions in non-CNS tissue. Hum Mol Genet 8:813–822PubMedCrossRefGoogle Scholar
  263. Schwarzschild MA, Chen JF, Ascherio A (2002) Caffeinated clues and the promise of adenosine A(2A) antagonists in PD. Neurology 58:1154–1160PubMedCrossRefGoogle Scholar
  264. Schwarzschild MA, Agnati L, Fuxe K, Chen JF, Morelli M (2006) Targeting adenosine A2A receptors in Parkinson's disease. Trends Neurosci 29:647–654PubMedCrossRefGoogle Scholar
  265. Sebastiao AM, Ribeiro JA (1996) Adenosine A2 receptor-mediated excitatory actions on the nervous system. Prog Neurobiol 48:167–189PubMedCrossRefGoogle Scholar
  266. Sebastiao AM, Ribeiro JA (2009a) Triggering neurotrophic factor actions through adenosine A2A receptor activation: implications for neuroprotection. Br J Pharmacol 158:15–22PubMedCrossRefGoogle Scholar
  267. Sebastiao AM, Ribeiro JA (2009b) Adenosine receptors and the central nervous system. Handb Exp Pharmacol 193:471–534PubMedCrossRefGoogle Scholar
  268. Selkoe DJ (2004) Alzheimer disease: mechanistic understanding predicts novel therapies. Ann Intern Med 140:627–638PubMedGoogle Scholar
  269. Selley ML (2004) Increased homocysteine and decreased adenosine formation in Alzheimer's disease. Neurol Res 26:554–557PubMedCrossRefGoogle Scholar
  270. Seo H, Sonntag KC, Isacson O (2004) Generalized brain and skin proteasome inhibition in Huntington's disease. Ann Neurol 56:319–328PubMedCrossRefGoogle Scholar
  271. Shen H, Zhang L, Yuen D, Logan R, Jung BP, Zhang G, Eubanks JH (2002) Expression and function of A1 adenosine receptors in the rat hippocampus following transient forebrain ischemia. Neuroscience 114:547–556PubMedCrossRefGoogle Scholar
  272. Shen HY, Coelho JE, Ohtsuka N, Canas PM, Day YJ, Huang QY, Rebola N, Yu L, Boison D, Cunha RA, Linden J, Tsien JZ, Chen JF (2008) A critical role of the adenosine A2A receptor in extrastriatal neurons in modulating psychomotor activity as revealed by opposite phenotypes of striatum and forebrain A2A receptor knock-outs. J Neurosci 28:2970–2975PubMedCrossRefGoogle Scholar
  273. Shi D, Nikodijevic O, Jacobson KA, Daly JW (1993) Chronic caffeine alters the density of adenosine, adrenergic, cholinergic, GABA, and serotonin receptors and calcium channels in mouse brain. Cell Mol Neurobiol 13:247–261PubMedCrossRefGoogle Scholar
  274. Shiozaki S, Ichikawa S, Nakamura J, Kitamura S, Yamada K, Kuwana Y (1999) Actions of adenosine A2A receptor antagonist KW-6002 on drug-induced catalepsy and hypokinesia caused by reserpine or MPTP. Psychopharmacology (Berl) 147:90–95CrossRefGoogle Scholar
  275. Shoulson I (1998) Experimental therapeutics of neurodegenerative disorders: unmet needs. Science 282:1072–1074PubMedCrossRefGoogle Scholar
  276. Shoulson I, Chase T (1975) Caffeine and the antiparkinsonian response to levodopa or piribedil. Neurology 25:722–724PubMedCrossRefGoogle Scholar
  277. Simon DK, Swearingen CJ, Hauser RA, Trugman JM, Aminoff MJ, Singer C, Truong D, Tilley BC (2008) Caffeine and progression of Parkinson disease. Clin Neuropharmacol 31:189–196PubMedCrossRefGoogle Scholar
  278. Simpson RE, O'Regan MH, Perkins LM, Phillis JW (1992) Excitatory transmitter amino acid release from the ischemic rat cerebral cortex: effects of adenosine receptor agonists and antagonists. J Neurochem 58:1683–1690PubMedCrossRefGoogle Scholar
  279. Singh S, Singh K, Gupta SP, Patel DK, Singh VK, Singh RK, Singh MP (2009) Effect of caffeine on the expression of cytochrome P450 1A2, adenosine A2A receptor and dopamine transporter in control and 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine treated mouse striatum. Brain Res 1283:115–126PubMedCrossRefGoogle Scholar
  280. Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, Caldwell C, Ohta A, Thiel M (2004) Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol 22:657–682PubMedCrossRefGoogle Scholar
  281. Smith PA, Heijmans N, Ouwerling B, Breij EC, Evans N, van Noort JM, Plomp AC, Delarasse C, 't Hart B, Pham-Dinh D, Amor S (2005) Native myelin oligodendrocyte glycoprotein promotes severe chronic neurological disease and demyelination in Biozzi ABH mice. Eur J Immunol 35:1311–1319PubMedCrossRefGoogle Scholar
  282. Soriano A, Ventura R, Molero A, Hoen R, Casado V, Cortes A, Fanelli F, Albericio F, Lluis C, Franco R, Royo M (2009) Adenosine A2A receptor-antagonist/dopamine D2 receptor-agonist bivalent ligands as pharmacological tools to detect A2A-D2 receptor heteromers. J Med Chem 52:5590–5602PubMedCrossRefGoogle Scholar
  283. Stacy M, Silver D, Mendis T, Sutton J, Mori A, Chaikin P, Sussman NM (2008) A 12-week, placebo-controlled study (6002-US-006) of istradefylline in Parkinson disease. Neurology 70:2233–2240PubMedCrossRefGoogle Scholar
  284. Stamey W, Jankovic J (2008) Impulse control disorders and pathological gambling in patients with Parkinson disease. Neurologist 14:89–99PubMedCrossRefGoogle Scholar
  285. Steinman L, Zamvil SS (2006) How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann Neurol 60:12–21PubMedCrossRefGoogle Scholar
  286. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90:1977–1981PubMedCrossRefGoogle Scholar
  287. Strong R, Grotta JC, Aronowski J (2000) Combination of low dose ethanol and caffeine protects brain from damage produced by focal ischemia in rats. Neuropharmacology 39:515–522PubMedCrossRefGoogle Scholar
  288. Sugars KL, Rubinsztein DC (2003) Transcriptional abnormalities in Huntington disease. Trends Genet 19:233–238PubMedCrossRefGoogle Scholar
  289. Sun CN, Cheng HC, Chou JL, Lee SY, Lin YW, Lai HL, Chen HM, Chern Y (2006) Rescue of p53 blockage by the A2A adenosine receptor via a novel interacting protein, Translin-associated protein X. Mol Pharmacol 70:454–466PubMedCrossRefGoogle Scholar
  290. Svenningsson P, Nomikos GG, Fredholm BB (1995) Biphasic changes in locomotor behavior and in expression of mRNA for NGFI-A and NGFI-B in rat striatum following acute caffeine administration. J Neurosci 15:7612–7624PubMedGoogle Scholar
  291. Svenningsson P, Le Moine C, Fisone G, Fredholm BB (1999) Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog Neurobiol 59:355–396PubMedCrossRefGoogle Scholar
  292. Szabo C, Pacher P, Swanson RA (2006) Novel modulators of poly(ADP-ribose) polymerase. Trends Pharmacol Sci 27:626–630PubMedCrossRefGoogle Scholar
  293. Tebano MT, Martire A, Potenza RL, Gro C, Pepponi R, Armida M, Domenici MR, Schwarzschild MA, Chen JF, Popoli P (2008) Adenosine A(2A) receptors are required for normal BDNF levels and BDNF-induced potentiation of synaptic transmission in the mouse hippocampus. J Neurochem 104:279–286PubMedGoogle Scholar
  294. The Huntington’s Disease Collaborative Research Group (THsDCR) (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell 72:971–983CrossRefGoogle Scholar
  295. Torvinen M, Marcellino D, Canals M, Agnati LF, Lluis C, Franco R, Fuxe K (2005) Adenosine A2A receptor and dopamine D3 receptor interactions: evidence of functional A2A/D3 heteromeric complexes. Mol Pharmacol 67:400–407PubMedCrossRefGoogle Scholar
  296. Trevitt J, Vallance C, Harris A, Goode T (2009) Adenosine antagonists reverse the cataleptic effects of haloperidol: implications for the treatment of Parkinson’s diease. Pharmacol Biochem Behav 92:521–527Google Scholar
  297. Tronci E, Simola N, Borsini F, Schintu N, Frau L, Carminati P, Morelli M (2007) Characterization of the antiparkinsonian effects of the new adenosine A2A receptor antagonist ST1535: acute and subchronic studies in rats. Eur J Pharmacol 566:94–102PubMedCrossRefGoogle Scholar
  298. Tsutsui S, Vergote D, Shariat N, Warren K, Ferguson SS, Power C (2008) Glucocorticoids regulate innate immunity in a model of multiple sclerosis: reciprocal interactions between the A1 adenosine receptor and beta-arrestin-1 in monocytoid cells. FASEB J 22:786–796PubMedCrossRefGoogle Scholar
  299. Tsutsui S, Schnermann J, Noorbakhsh F, Henry S, Yong VW, Winston BW, Warren K, Power C (2004) A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J Neurosci 24:1521–1529PubMedCrossRefGoogle Scholar
  300. Turner CP, Seli M, Ment L, Stewart W, Yan H, Johansson B, Fredholm BB, Blackburn M, Rivkees SA (2003) A1 adenosine receptors mediate hypoxia-induced ventriculomegaly. Proc Natl Acad Sci USA 100:11718–11722PubMedCrossRefGoogle Scholar
  301. Ulas J, Brunner LC, Nguyen L, Cotman CW (1993) Reduced density of adenosine A1 receptors and preserved coupling of adenosine A1 receptors to G proteins in Alzheimer hippocampus: a quantitative autoradiographic study. Neuroscience 52:843–854PubMedCrossRefGoogle Scholar
  302. Valenza M, Carroll JB, Leoni V, Bertram LN, Bjorkhem I, Singaraja RR, Di Donato S, Lutjohann D, Hayden MR, Cattaneo E (2007) Cholesterol biosynthesis pathway is disturbed in YAC128 mice and is modulated by huntingtin mutation. Hum Mol Genet 16:2187–2198PubMedCrossRefGoogle Scholar
  303. van Boxtel MP, Schmitt JA, Bosma H, Jolles J (2003) The effects of habitual caffeine use on cognitive change: a longitudinal perspective. Pharmacol Biochem Behav 75:921–927PubMedCrossRefGoogle Scholar
  304. van Dam RM, Willett WC, Manson JE, Hu FB (2006) Coffee, caffeine, and risk of type 2 diabetes: a prospective cohort study in younger and middle-aged U.S. women. Diabetes Care 29:398–403PubMedCrossRefGoogle Scholar
  305. Varani K, Rigamonti D, Sipione S, Camurri A, Borea PA, Cattabeni F, Abbracchio MP, Cattaneo E (2001) Aberrant amplification of A(2A) receptor signaling in striatal cells expressing mutant huntingtin. FASEB J 15:1245–1247PubMedGoogle Scholar
  306. Varani K, Abbracchio MP, Cannella M, Cislaghi G, Giallonardo P, Mariotti C, Cattabriga E, Cattabeni F, Borea PA, Squitieri F, Cattaneo E (2003) Aberrant A2A receptor function in peripheral blood cells in Huntington's disease. FASEB J 17:2148–2150PubMedGoogle Scholar
  307. Varma MR, Dixon CE, Jackson EK, Peters GW, Melick JA, Griffith RP, Vagni VA, Clark RS, Jenkins LW, Kochanek PM (2002) Administration of adenosine receptor agonists or antagonists after controlled cortical impact in mice: effects on function and histopathology. Brain Res 951:191–201PubMedCrossRefGoogle Scholar
  308. Varty GB, Hodgson RA, Pond AJ, Grzelak ME, Parker EM, Hunter JC (2008) The effects of adenosine A2A receptor antagonists on haloperidol-induced movement disorders in primates. Psychopharmacology 200:393–401PubMedCrossRefGoogle Scholar
  309. Vidi PA, Chemel BR, Hu CD, Watts VJ (2008) Ligand-dependent oligomerization of dopamine D(2) and adenosine A(2A) receptors in living neuronal cells. Mol Pharmacol 74:544–551PubMedCrossRefGoogle Scholar
  310. Von Lubitz DK, Lin RC, Jacobson KA (1995) Cerebral ischemia in gerbils: effects of acute and chronic treatment with adenosine A2A receptor agonist and antagonist. Eur J Pharmacol 287:295–302CrossRefGoogle Scholar
  311. Von Lubitz DK, Lin RC, Melman N, Ji XD, Carter MF, Jacobson KA (1994) Chronic administration of selective adenosine A1 receptor agonist or antagonist in cerebral ischemia. Eur J Pharmacol 256:161–167CrossRefGoogle Scholar
  312. Wang J, Wang C-E, Orr A, Tydlacka S, Li S-H, Li X-J (2008) Impaired ubiquitin-proteasome system activity in the synapses of Huntington's disease mice. J Cell Biol 180:1177–1189PubMedCrossRefGoogle Scholar
  313. Washington CB, Jackson EK, Janesko KL, Vagni VA, Lefferis Z, Jenkins LW, Clark RS, Dixon CE, Kochanek PM (2005) Chronic caffeine administration reduces hippocampal neuronal cell death after experimental traumatic brain injury in mice. J Neurotrauma 22:366–370Google Scholar
  314. Wiese S, Jablonka S, Holtmann B, Orel N, Rajagopal R, Chao MV, Sendtner M (2007) Adenosine receptor A2A-R contributes to motoneuron survival by transactivating the tyrosine kinase receptor TrkB. Proc Natl Acad Sci USA 104:17210–17215PubMedCrossRefGoogle Scholar
  315. Winkelmayer WC, Stampfer MJ, Willett WC, Curhan GC (2005) Habitual caffeine intake and the risk of hypertension in women. JAMA 294:2330–2335PubMedCrossRefGoogle Scholar
  316. Winn HR, Morii S, Berne RM (1985) The role of adenosine in autoregulation of cerebral blood flow. Ann Biomed Eng 13:321–328PubMedCrossRefGoogle Scholar
  317. Wirkner K, Assmann H, Koles L, Gerevich Z, Franke H, Norenberg W, Boehm R, Illes P (2000) Inhibition by adenosine A(2A) receptors of NMDA but not AMPA currents in rat neostriatal neurons. Br J Pharmacol 130:259–269PubMedCrossRefGoogle Scholar
  318. Wyttenbach A, Swartz J, Kita H, Thykjaer T, Carmichael J, Bradley J, Brown R, Maxwell M, Schapira A, Orntoft TF, Kato K, Rubinsztein DC (2001) Polyglutamine expansions cause decreased CRE-mediated transcription and early gene expression changes prior to cell death in an inducible cell model of Huntington's disease. Hum Mol Genet 10:1829–1845PubMedCrossRefGoogle Scholar
  319. Xiao D, Bastia E, Xu YH, Benn CL, Cha JH, Peterson TS, Chen JF, Schwarzschild MA (2006) Forebrain adenosine A2A receptors contribute to L-3,4-dihydroxyphenylalanine-induced dyskinesia in hemiparkinsonian mice. J Neurosci 26:13548–13555PubMedCrossRefGoogle Scholar
  320. Xu K, Xu YH, Chen JF, Schwarzschild MA (2002) Caffeine's neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity shows no tolerance to chronic caffeine administration in mice. Neurosci Lett 322:13–16PubMedCrossRefGoogle Scholar
  321. Yamamoto M, Schapira AH (2008) Dopamine agonists in Parkinson's disease. Expert Rev Neurother 8:671–677PubMedCrossRefGoogle Scholar
  322. Yang JN, Chen JF, Fredholm BB (2009a) Physiological roles of A1 and A2A adenosine receptors in regulating heart rate, body temperature, and locomotion as revealed using knockout mice and caffeine. Am J Physiol 296:H1141–H1149Google Scholar
  323. Yang JN, Bjorklund O, Lindstrom-Tornqvist K, Lindgren E, Eriksson TM, Kahlstrom J, Chen JF, Schwarzschild MA, Tobler I, Fredholm BB (2009b) Mice heterozygous for both A1 and A(2A) adenosine receptor genes show similarities to mice given long-term caffeine. J Appl Physiol 106:631–639PubMedCrossRefGoogle Scholar
  324. Yu L, Huang Z, Mariani J, Wang Y, Moskowitz M, Chen JF (2004) Selective inactivation or reconstitution of adenosine A2A receptors in bone marrow cells reveals their significant contribution to the development of ischemic brain injury. Nat Med 10:1081–1087PubMedCrossRefGoogle Scholar
  325. Yu L, Coelho JE, Zhang X, Fu Y, Tillman A, Karaoz U, Fredholm BB, Weng Z, Chen JF (2009) Uncovering multiple molecular targets for caffeine using a drug target validation strategy combining A2A receptor knockout mice with microarray profiling. Physiol Genomics 37:199–210PubMedCrossRefGoogle Scholar
  326. Yu L, Shen HY, Coelho JE, Araujo IM, Huang QY, Day YJ, Rebola N, Canas PM, Rapp EK, Ferrara J, Taylor D, Muller CE, Linden J, Cunha RA, Chen JF (2008) Adenosine A2A receptor antagonists exert motor and neuroprotective effects by distinct cellular mechanisms. Ann Neurol 63:338–346PubMedCrossRefGoogle Scholar
  327. Zahniser NR, Simosky JK, Mayfield RD, Negri CA, Hanania T, Larson GA, Kelly MA, Grandy DK, Rubinstein M, Low MJ, Fredholm BB (2000) Functional uncoupling of adenosine A(2A) receptors and reduced responseto caffeine in mice lacking dopamine D2 receptors. J Neurosci 20:5949–5957PubMedGoogle Scholar
  328. Zhou H, Cao F, Wang Z, Yu Z-X, Nguyen H-P, Evans J, Li S-H, Li X-J (2003) Huntingtin forms toxic NH2-terminal fragment complexes that are promoted by the age-dependent decrease in proteasome activity. J Cell Biol 163:109–118PubMedCrossRefGoogle Scholar
  329. Zhou JG, Meno JR, Hsu SS, Winn HR (1994) Effects of theophylline and cyclohexyladenosine on brain injury following normo- and hyperglycemic ischemia: a histopathologic study in the rat. J Cereb Blood Flow Metab 14:166–173PubMedCrossRefGoogle Scholar
  330. Zipser BD, Johanson CE, Gonzalez L, Berzin TM, Tavares R, Hulette CM, Vitek MP, Hovanesian V, Stopa EG (2007) Microvascular injury and blood-brain barrier leakage in Alzheimer's disease. Neurobiol Aging 28:977–986PubMedCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of NeurologyBostonUSA
  2. 2.Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan

Personalised recommendations