Engineering Advantages, Challenges and Status of Grass Energy Crops

  • David I. Bransby
  • Damian J. Allen
  • Neal Gutterson
  • Gregory Ikonen
  • Edward RichardJr
  • William Rooney
  • Edzard van Santen
Chapter
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 66)

Abstract

High yield with low inputs, resistance to disease, pests and drought, adaptation to a wide range of soils and climates, and biomass composition that is optimized for end use are identified as important traits for cellulosic biomass crops. Current status and future prospects for genetic improvement are reviewed for grass crops, using Miscanthus, switchgrass, sugarcane (or energy cane) and sorghum as examples. In addition, possible approaches for integrating grasses into cellulosic biomass supply systems are discussed. It is concluded that both perennial and annual grasses can play a significant role in providing cellulosic biomass for a wide range of bioenergy applications, and considerable potential exists for genetic improvement of grass crops for this purpose.

References

  1. Alexander AG (1985) The energy cane alternative. Sugar series, vol 6. Elsevier, AmsterdamGoogle Scholar
  2. Alexander AG (1991) High energy cane. In: Payne JH (ed) Cogeneration in the cane sugar industry. Elsevier, New York, pp 233–242CrossRefGoogle Scholar
  3. Alexandrova KS, Denchev PD, Conger BV (1996a) Micropropagation of switchgrass by node culture. Crop Sci 36:1709–1711PubMedCrossRefGoogle Scholar
  4. Alexandrova KS, Denchev PD, Conger BV (1996b) In vitro development of inflorescences from switchgrass nodal segments. Crop Sci 36:175–178CrossRefGoogle Scholar
  5. Amaducci S, Monti A, Venturi G (2004) Non-structural carbohydrates and fibre components in sweet and fibre sorghum as affected by low and normal input techniques. Ind Crops Prod 20:111–118CrossRefGoogle Scholar
  6. Amalraj VA, Balasundaram N (2006) On the taxonomy of the members of ‘Saccharum complex’. Genet Resour Crop Evol 53:35–41CrossRefGoogle Scholar
  7. Andersson NJ (1855) Om de med Saccharum beslägtade genera. Öfvers Kungl Vet Akad Förn Stockholm 12:151–167Google Scholar
  8. Anonymous (2007) Release of three high fiber sugarcane varieties: L 79-1002, Ho 00-961, and HoCP 91-552. Sugar Bull 85(10):21–26Google Scholar
  9. Atienza G, Satovic Z, Petersen K, Dolstra O, Martin A (2002) Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers. Theor Appl Genet 105:946–952PubMedCrossRefGoogle Scholar
  10. Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A (2003a) Identification of QTLs influencing agronomic traits in Miscanthus sinensis Anderss. I. Total height, flag-leaf height and stem diameter. Theor Appl Genet 107:123–129PubMedCrossRefGoogle Scholar
  11. Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A (2003b) Identification of QTLs influencing combustion quality in Miscanthus sinensis Anderss. II. Chlorine and potassium content. Theor Appl Genet 107:857–863PubMedCrossRefGoogle Scholar
  12. Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martín A (2003c) Identification of QTLs associated with yield and its components in Miscanthus sinensis Anderss. Euphytica 132:353–361CrossRefGoogle Scholar
  13. Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A (2003d) Influencing combustion quality in Miscanthus sinensis Anderss.: identification of QTLs for calcium, phosphorus and sulphur content. Plant Breed 122:141–145CrossRefGoogle Scholar
  14. Babu R, Nair SK, Prasanna BM, Gupta HS (2004) Integrating marker-assisted selection in crop breeding—prospects and challenges. Curr Sci 87:607–619Google Scholar
  15. Baoder JD, Barrier JW (1990) Producing fuels and chemicals from cellulosic crops. In: Janick J, Simon JE (eds) Advances in new crops. Timber, Portland, pp 257–259Google Scholar
  16. Basnayake J, Cooper M, Ludlow MM, Henzell RG, Snell PJ (1995) Inheritance of osmotic adjustment to water stress in three grain sorghum crosses. Theor Appl Genet 90:675–682CrossRefGoogle Scholar
  17. Beale CV, Long SP (1995) Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates? Plant Cell Environ 18:641–650CrossRefGoogle Scholar
  18. Billa E, Koullas DP, Monties B, Koukios EG (1997) Structure and composition of sweet sorghum stalk components. Ind Crops Prod 6:297–302CrossRefGoogle Scholar
  19. Blumenthal JB, Rooney WL, Wang D (2007) Yield and ethanol production in sorghum genotypes. In: Abstracts, Annual Meeting of ASA-CSSA-SSSA, New Orleans, 4–8 November 2007Google Scholar
  20. Bourne JK Jr (2007) Green dreams. Natl Geogr October:38–59Google Scholar
  21. Bouton JH (2007) Molecular breeding of switchgrass for use as a biofuel crop. Curr Opin Genet Dev 17:553–558PubMedCrossRefGoogle Scholar
  22. Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li ZK, Lin YR, Liu SC, Luo LJ, Marler BS, Ming R, Mitchell SE, Qiang D, Reischmann K, Schulze SR, Skinner DN, Wang YW, Kresovich S, Schertz KF, Paterson AH (2003) A high-density genetic recombination map of sequence-tagged sites for Sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165:367–386PubMedGoogle Scholar
  23. Bransby DI, Smith HA, Taylor CR, Duffy PA (2005). An interactive budget model for producing and delivering switchgrass to a bioprocessing plant. Ind Biotechnol 1(2):122–125CrossRefGoogle Scholar
  24. Buchanan CD, Lim S, Salzman RA, Kagiampakis I, Morishige DT, Weers B, Klein RR, Pratt LH, Cordonnier-Pratt M-M, Klein PE, Mullet JE (2005) Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 58:699–720PubMedCrossRefGoogle Scholar
  25. Burton GW (1986) Biomass production from herbaceous plant. In: Smith WH (ed) Biomass energy development. Plenum, New York, pp 163–175Google Scholar
  26. Cai Q, Aitken KS, Deng HH, Chen XW, Fu C, Jackson PA, McIntyre CL (2005) Verification of the introgression of Erianthus arundinaceus into sugarcane using molecular markers. Plant Breed 124:322–328CrossRefGoogle Scholar
  27. Chiang YC, Schaal BA, Chou CH, Huang S, Chiang TY (2003) Contrasting selection modes at the Adh1 locus in outcrossing Miscanthus sinensis vs. inbreeding Miscanthus condensatus (Poaceae). Am J Bot 90:561–570PubMedCrossRefGoogle Scholar
  28. Christian DG, Lamptey JNL, Forde SMD, Plumb RT (1994) First report of barley yellow dwarf luteovirus on Miscanthus in the United Kingdom. Eur J Plant Pathol 100:167–170CrossRefGoogle Scholar
  29. Christian DG, Riche AB, Yates NE (2008) Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Ind Crops Prod 28:320–327CrossRefGoogle Scholar
  30. Clark J (1981) The inheritance of fermentable carbohydrates in stems of Sorghum bicolor (L.) Moench. PhD. Dissertation, Texas A&M University, College Station, TexasGoogle Scholar
  31. Clifton-Brown J, Chiang YC, Hodkinson TR (2008) Miscanthus: genetic resources and breeding potential to enhance bioenergy production. In: Vermeris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 273–294Google Scholar
  32. Clifton-Brown JC, Lewandowski I (2000a) Water use efficiency and biomass partitioning of three different Miscanthus genotypes with limited and unlimited water supply. Ann Bot 86:191–200CrossRefGoogle Scholar
  33. Clifton-Brown JC, Lewandowski I (2000b) Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytol 148:287–294CrossRefGoogle Scholar
  34. Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DG, Kjeldsen JB, Jorgensen U, Mortensen JV, Riche AB, Schwartz KU (2001) Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J 93:1013–1019CrossRefGoogle Scholar
  35. Coombs J (1984) Sugar-cane as an energy crop. Biotechnol Genet Eng Rev 1:311–345Google Scholar
  36. Cordeiro GM, Pan YB, Henry RJ (2003) Sugarcane microsatellites for the assessment of genetic diversity in sugarcane germplasm. Plant Sci 165:181–189CrossRefGoogle Scholar
  37. Corn RJ (2009) Heterosis and composition of sweet sorghum. PhD Dissertation, Texas A&M University, College Station, TexasGoogle Scholar
  38. Das MK, Fuentes RG, Taliaferro CM (2004) Genetic variability and trait relationships in switchgrass. Crop Sci 44: 443–448Google Scholar
  39. Dawson L, Boopathy R (2007) Use of post-harvest sugarcane residue for ethanol production. Bioresour Technol 98:1695–1699PubMedCrossRefGoogle Scholar
  40. Denchev PD, Conger BV (1994) Plant regeneration from callus cultures of switchgrass. Crop Sci 34:1623–1627CrossRefGoogle Scholar
  41. Denchev PD, Conger BV (1995) In vitro culture of switchgrass: influence of 2,4-D and picloram in combination with benzyladenine on callus initiation and regeneration. Plant Cell Tissue Organ Cult 40:43–48CrossRefGoogle Scholar
  42. Edme SJ, Miller JD, Glaz B, Tai PYP, Comstock JC (2005) Genetic contributions to yield gains in the Florida sugarcane industry across thirty-three years. Crop Sci 45:92–97CrossRefGoogle Scholar
  43. Farrell AD, Clifton-Brown JC, Lewandowski I, Jones MB (2006) Genotypic variation in cold tolerance influences the yield of Miscanthus. Ann Appl Biol 149:337–345CrossRefGoogle Scholar
  44. Florida Division of Agriculture and Consumer Services (2002) Division of Plant Industry, TRI-OLOGY, vol 41, no. 2, March–April 2002, http://www.doacs.state.fl.us/pi/enpp/02–mar–apr.html Google Scholar
  45. Florida Division of Agriculture and Consumer Services (2005) Division of Plant Industry, TRI-OLOGY, vol 44, no. 5, September–October 2005Google Scholar
  46. Gams W, Klamer M, O’Donnell K (1999) Fusarium miscanthi sp. nov. from Miscanthus litter. Mycol 91:263–268CrossRefGoogle Scholar
  47. Gonzalez-Hernandez J, Sarath G, Stein J, Owens V, Gedye K, Boe A (2009) A multiple species approach to biomass production from native herbaceous perennial feedstocks. In Vitro Cell Dev Biol Plant 45:267–281CrossRefGoogle Scholar
  48. Gossmann M (2000) Schadwirkung einer pilzparasitären Rhizombesiedlung und Maßnahmen zur Verbesserung der Austriebs- und Biomasseleistung bei Miscanthus x giganteus Greef et Deu. In: Pude R (ed) Miscanthus—Vom Anbau bis zur Verwertung Miscanthus—Symposium. Beiträge Agrarwissenschaften, Bonn, pp 26–31Google Scholar
  49. Greef JM, Deuter M (1993) Syntaxonomy of Miscanthus x giganteus GREEF et DEU. Angew Bot 67:87–90Google Scholar
  50. Gupta PK, Rustgi S, Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101:5PubMedCrossRefGoogle Scholar
  51. Gupta SD, Conger BV (1998) In vitro differentiation of multiple shoot clumps from intact seedlings of switchgrass. In Vitro Cell Dev Biol Plant 34:196–202CrossRefGoogle Scholar
  52. Gupta SD, Conger BV (1999) Somatic embryogenesis and plant regeneration from suspension cultures of switchgrass. Crop Sci 39:243–247CrossRefGoogle Scholar
  53. Halbert SE, Remaudiere G (2000) A new oriental Melanaphis species recently introduced in North America [Hemiptera, Aphididae]. Rev Fr Entomol 22:109–117Google Scholar
  54. Hallam AI, Anderson C, Buxton DR (2001) Comparative economic analysis of perennial, annual and intercrops for biomass production. Biomass Bioenergy 21:407–424CrossRefGoogle Scholar
  55. Heaton E, Voigt T, Long SP (2004) A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 27:21–30CrossRefGoogle Scholar
  56. Heaton EA, Dohleman FG, Long SP (2008) Meeting US Biofuel goals with less land: the potential of Miscanthus. Glob Change Biol 14:1–15CrossRefGoogle Scholar
  57. Heaton E, Dohleman FG, Long SP (2009) Seasonal nitrogen dynamics of Miscanthus x giganteus and Panicum virgatum. GCB Bioenergy 1:297–307CrossRefGoogle Scholar
  58. Heichel GH (1974) Comparative efficiency of energy use in crop production. Bull Conn Agric Exp Stn New Haven 739:1–26Google Scholar
  59. Hernández P, Dorado G, Laurie DA, Martín A, Snape JW (2001) Microsatellites and RFLP probes from maize are efficient sources of molecular markers for the biomass energy crop Miscanthus. Theor Appl Genet 102:616–622CrossRefGoogle Scholar
  60. Hirata M, Hasegawa N, Nogami K, Sonoda T (1999) Use of a young tree plantation for grazing of cattle in southern Kyushu, Japan: 3. Non-destructive estimation of basal area and biomass of Miscanthus sinensis grass plants. Proc Int Rangeland Congr 480–481Google Scholar
  61. Hodkinson TR, Renvoize SA, Chase MW (1997) Systematics of Miscanthus. Aspects Appl Biol 49:189–198Google Scholar
  62. Hodkinson TR, Chase MW, Renvoize SA (2002) Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Ann Bot 89:627PubMedCrossRefGoogle Scholar
  63. Honda M (1930) Monographia Poacearum Japonicarum, Bambusoides exclusis. J Fac Sci Imperial U Tokyo III Bot HI:484Google Scholar
  64. Huggett DAJ, Leather SR, Walters KFA (1999) Suitability of the biomass crop Miscanthus sinensis as a host for the aphids Rhopalosiphum padi (L.) and Rhopalosiphum maidis (F.), and its susceptibility to the plant luteovirus barley yellow dwarf virus. Agric For Entomol 1:143–149CrossRefGoogle Scholar
  65. Jakob K, Zhou F, Paterson AH (2009) Genetic improvement of C4 grasses as cellulosic biofuel feedstocks. In Vitro Cell Dev Biol Plant 45:291–305CrossRefGoogle Scholar
  66. Jessup R (2009) Development and status of dedicated energy crops in the United States. In Vitro Cell Dev Biol Plant 45:282–290CrossRefGoogle Scholar
  67. Jezowski S (2008) Yield traits of six clones of Miscanthus in the first 3 years following planting in Poland. Ind Crops Prod 27:65–68CrossRefGoogle Scholar
  68. Jordan WR, Miller FR (1980) Genetic variability in sorghum root systems: implications for drought tolerance. In: Turner PC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley, New York, pp 383–399Google Scholar
  69. Keng YL (1932) The gross morphology of Andropogoneae. PhD Thesis. George Washington UniversityGoogle Scholar
  70. Kimber C (2000) Origins of domesticated sorghum and its early diffusion to India and China. In: Smith CW, Frederiksen RA (eds) Sorghum. Wiley, New York, pp 3–98Google Scholar
  71. Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong J, Obert JA, Morishige DT, Schlueter SD, Childs KL, Ale M, Mullet JE (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res 10:789–807PubMedCrossRefGoogle Scholar
  72. Klein RR, Klein PE, Mullet JE, Minx P, Rooney WL, Schertz KF (2005) Fertility restorer locus Rf1 of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12. Theor Appl Genet 111:994–1012PubMedCrossRefGoogle Scholar
  73. Konishi S, Izawa T, Lin S, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss of seed shattering during rice domestication. Am Assoc Adv Sci 312:1392–1396Google Scholar
  74. Lam E, Shine J Jr, daSilva J, Lawton M, Bonos S, Martin C, Carrer H, Silva-Filho MC, Glynn N, Helsel Z, Jiong M, Richard EP Jr, Souza G, Ming R (2009) Improving sugarcane for biofuel: engineering for an even better feedstock. GCB Bioenergy 1:251–255CrossRefGoogle Scholar
  75. Lee YN (1964) Taxonomic studies on the genus Miscanthus. 3. Relationship among the section, subsection and species. J Jpn Bot 38:197–205Google Scholar
  76. Legendre BL, Burner DM (1995) Biomass production of sugarcane cultivars and early-generation hybrids. Biomass Bioenergy 8:55–61CrossRefGoogle Scholar
  77. Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Am Assoc Adv Sci 311:1936–1939Google Scholar
  78. Lo CC, Chen YH, Huang YJ, Shih SC (1986) Recent progress in Miscanthus nobilization program. Proc Int Soc Sugar Cane Technol 19:514–521Google Scholar
  79. Loomis RS, Williams WA (1963) Maximum crop productivity: an estimate. Crop Sci 3:67–72CrossRefGoogle Scholar
  80. Macedo IC, Leal MRLV, da Silva JEAR (2004) Assessment of greenhouse gas emissions in the production and use of fuel ethanol in Brazil. Sao Paulo. http://www.unica.com.br/i_pages/files/pdf_ingles.pdf Google Scholar
  81. Maiti RK, Rao KE, Raju PS, House LR, Prasada-Rao KE (1984) The glossy trait in sorghum: its characteristics and significance in crop improvement. Field Crops Res 9:279–289CrossRefGoogle Scholar
  82. Martinez-Reyna JM, Vogel KP (2002) Incompatibility systems in switchgrass. Crop Sci 42:1800–1805CrossRefGoogle Scholar
  83. Martinez-Reyna JM, Vogel KP (2008) Heterosis in switchgrass: spaced plants. Crop Sci 48:1312–1320CrossRefGoogle Scholar
  84. McBee GG, Miller FR, Dominy RE, Monk RL (1987) Quality of sorghum biomass for methanogenesis. In: Klass DL (ed) Energy from biomass and waste. Elsevier, London, pp 251–260Google Scholar
  85. McCollum FT III, McCuistion K, Bean B (2005) Brown Midrib and photoperiod-sensitive forage sorghums. In: Proceedings of the 2005 Plains Nutrition Council Spring Conference. Publication No. AREC 05-20. Texas A&M University Agricultural Research and Extension Center, Amarillo, TX, pp 36–46Google Scholar
  86. McLaughlin SB, Kszos LA (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28:515–535CrossRefGoogle Scholar
  87. McLaughlin SB, Kiniry JR, Taliaferro CM, de la Torre Ugarte D (2006) Projecting yield and utilization potential of switchgrass as an energy crop. Adv Agron 90:267–297CrossRefGoogle Scholar
  88. Menz MA, Klein RR, Mullet JE, Obert JA, Unruh NC, Klein PE (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP(R), RFLP and SSR markers. Plant Mol Biol 48:483–499PubMedCrossRefGoogle Scholar
  89. Ming R, Del Monte TA, Hernandez E, Moore PH, Irvine JE, Paterson AH (2002) Comparative analysis of QTLs affecting plant height and flowering among closely related diploid and polyploid genomes. Genome 45:794–803PubMedCrossRefGoogle Scholar
  90. Ming R, Moore PH, Wu KK, D’Hont A, Tew TL, Mirkov TE, da Silva J, Schnell RJ, Brumbley SM, Lakshmanan P, Jifon J, Rai M, Comstock JC, Glaszmann JC, Paterson AH (2006) Sugarcane improvement through breeding and biotechnology. Plant Breed Rev 27:17–118Google Scholar
  91. Missaoui AM, Paterson AH, Bouton JH (2006) Molecular markers for the classification of switchgrass (Panicum virgatum L.) germplasm and to assess genetic diversity in three synthetic switchgrass populations. Genet Resour Crop Evol 53:1291–1302CrossRefGoogle Scholar
  92. Monk RL, Miller FR, McBee GG (1984) Sorghum improvement for energy production. Biomass 6:145–385CrossRefGoogle Scholar
  93. Moore KJ, Boote KJ, Sanderson MA (2004) Physiology and developmental morphology. In: Moser L, Burson B, Sollenberger L (eds) Warm-season (C4) grasses. American Society for Agronomy, Madison, pp 179–216Google Scholar
  94. Muchow RC, Spilman MF, Wood WW, Thomas MR (1994) Radiation interception and biomass accumulation in a sugarcane crop under irrigated tropical conditions. Aust J Agric Res 45:3–49CrossRefGoogle Scholar
  95. Muchow RC, Cooper M, Hammer GL (1996) Characterizing environmental challenges using models. In: Cooper M, Hammer GL, Wallingford UK (eds) Plant adaptation and crop improvement. CAB International, Wallingford, pp 349–364Google Scholar
  96. Mukherjee SK (1950) Search for wild relatives of sugarcane in India. Int Sugar J 52:261–262Google Scholar
  97. Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, Kresovich S (2008) Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem and grain nonstructural carbohydrates. Crop Sci 48:2165–2179CrossRefGoogle Scholar
  98. Naidu SL, Moose SP, Al-Shoaibi AK, Raines CA, Long SP (2003) Cold tolerance of C4 photosynthesis in Miscanthus × giganteus: adaptation in amounts and sequence of C4 photosynthetic enzymes. Plant Physiol 132:1688–1697PubMedCrossRefGoogle Scholar
  99. Nilsson-Leissner G (1942) A case of increased vitality in sibpollinated later generations of self-fertilized Dactylis glomerata strains. Hereditas 28:222–224Google Scholar
  100. Ohwi J (1965) Flora of Japan. Smithsonian Institution, Washington, DCGoogle Scholar
  101. O’Neill NR, Farr DF (1996) Miscanthus blight, a new foliar disease of ornamental grasses and sugarcane incited by Leptosphaeria sp. and its anamorphic state Stagonospora sp. Plant Dis 80:980–987CrossRefGoogle Scholar
  102. Panje RR (1972) The role of Saccharum spontaneum in sugarcane breeding. Proc Int Soc Sugar Cane Technol 14:217–223Google Scholar
  103. Panje RR, Babu CN (1960) Studies in Saccharum spontaneum. Distribution and geographical association of chromosome numbers. Cytologia 25:152–172CrossRefGoogle Scholar
  104. Parrish DJ, Fike JH (2005) The biology and agronomy of switchgrass for biofuels. Crit Rev Plant Sci 24:423–459CrossRefGoogle Scholar
  105. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Peterson DG, Rahman M, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556PubMedCrossRefGoogle Scholar
  106. Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Laboratory, Oak Ridge, TNCrossRefGoogle Scholar
  107. Pratt LH, Liang C, Shah M, Sun F, Wang HM, St. Patrick R, Gingle AR, Paterson AH, Wing R, Dean R, Klein R, Nguyen HT, Ma HM, Zhao X, Morishige DT, Mullet JE, Cordonnier-Pratt MM (2005) Sorghum expressed sequence tags identify signature genes for drought, pathogenesis, and skotomorphogenesis from a milestone set of 16,801 unique transcripts, Plant Physiol 139:869–884PubMedCrossRefGoogle Scholar
  108. Pude R, Diepenbrock W, Franken H, Greef JM (1996) Impact and causes of winter kills of Miscanthus. Mitt Ges Pflanzenbauwiss (Germany) 9:61–62Google Scholar
  109. Richard EP Jr (1999) Management of chopper harvester-generated green cane trash blankets: a new concern for Louisiana. Proc Int Soc Sugar Cane Technol 23:52–62Google Scholar
  110. Roach BT (1978) Utilization of Saccharum spontaneum in sugarcane breeding. Proc Int Soc Sugar Cane Technol 16:43–58Google Scholar
  111. Rooney WL (2004) Sorghum improvement—integrating traditional and new technology to produce improved genotypes. Adv Agron 83:37–109CrossRefGoogle Scholar
  112. Rooney WL, Aydin S (1999) The genetic control of a photoperiod sensitive response in Sorghum bicolor (L.) Moench. Crop Sci 39:397–400CrossRefGoogle Scholar
  113. Rosenow DT, Quisenberry JE, Wendt CW, Clark LE (1983) Drought tolerant sorghum and cotton germplasm. Agric Water Manag 7:207–222CrossRefGoogle Scholar
  114. Sanderson MA, Reed RL, McLaughlin SB, Wullschleger SD, Conger BV, Parrish DJ, Wolf DD, Taliaferro C, Hopkins AA, Ocumpaugh WR, Hussey MA, Read JC, Tischler CR (1996) Switchgrass as a sustainable bioenergy crop. Bioresour Technol 56:83–93CrossRefGoogle Scholar
  115. Sanderson MA, Adler PR, Boateng AA, Casler MD, Sarath G (2006) Switchgrass as a biofuels feedstock in the USA. Can J Plant Sci 86:1315–1325CrossRefGoogle Scholar
  116. Salvi S, Tuberosa R, Chiapparino E, Maccaferri M, Veillet S, van Beuningen L, Isaac P, Edwards K, Phillips RL (2002) Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol Biol 48:601–613PubMedCrossRefGoogle Scholar
  117. Smart AJ, Moser LE, Vogel KP (2003a) Establishment and seedling growth of big bluestem and switchgrass populations divergently selected for seedling tiller number. Crop Sci 43:1434–1440CrossRefGoogle Scholar
  118. Smart AJ, Vogel KP, Moser LE, Stroup WW (2003b) Divergent selection for seedling tiller number in big bluestem and switchgrass. Crop Sci 43:1427–1433CrossRefGoogle Scholar
  119. Smart AJ, Moser LE, Vogel KP (2004) Morphological characteristics of big bluestem and switchgrass plants divergently selected for seedling tiller number. Crop Sci 44:607–613Google Scholar
  120. Somleva MN, Tomaszewski Z, Conger BV (2002) Agrobacterium mediated genetic transformation of switchgrass. Crop Sci 42:2080–2087CrossRefGoogle Scholar
  121. Song JZ, Soller M, Genizi A (1999) The full-sib intercross line (FSIL): a QTL mapping design for outcrossing species. Genet Res 73:61–73CrossRefGoogle Scholar
  122. Subbotin SA, Vierstraete A, De Ley P, Rowe J, Waeyenberge L, Moens M, Vanfleteren JR (2001) Phylogenetic relationships within the cyst-forming nematodes (Nematoda, Heteroderidae) based on analysis of sequences from the ITS regions of ribosomal DNA. Mol Phylogenet Evol 21:1–16PubMedCrossRefGoogle Scholar
  123. Taliaferro CM (2002) Breeding and selection of new switchgrass varieties for increased biomass production. Vol ORNL/SUB-02-19XSY162C/01. Oak Ridge National Laboratory, Oak Ridge, TNGoogle Scholar
  124. Taliaferro CM, Vogel KP, Bouton JH, McLaughlin SB, Tuskan GA (1999) Reproductive characteristics and breeding improvement potential of switchgrass. In: Overend RP, Chonet E (eds) Biomass: a growth opportunity in green energy and value-added products, vol 1. Pergamon, Elsevier, Amsterdam, pp 147–153Google Scholar
  125. Teakle DS, Shukla DD, Ford RE (1989) Sugarcane mosaic virus. AAB Descriptions Plant Viruses 5Google Scholar
  126. Tew TL (2003) World sugarcane variety census—year 2000. Sugar Cane Int March/April:12–18Google Scholar
  127. Tew TL, Cobill RM (2008) Genetic improvement of sugarcane (Saccharum spp.) as an energy crop. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 249–272Google Scholar
  128. Thinggaard K (1997) Study of the role of Fusarium in the field establishment problem of Miscanthus. Acta Agric Scand B Plant Soil Sci 47:238–241Google Scholar
  129. Tobias CM, Twigg P, Hayden DM, Vogel KP, Mitchell RM, Lazo GR, Chow EK, Sarath G (2005) Analysis of expressed sequence tags and the identification of associated short tandem repeats in switchgrass. Theor Appl Genet 111:956–964PubMedCrossRefGoogle Scholar
  130. Varshney RK, Hoisington DA, Tyagi AK (2006) Advances in cereal genomics and applications in crop breeding. Trends Biotechnol 24:490–499PubMedCrossRefGoogle Scholar
  131. Viator RP, Johnson RM, Grimm CC, Richard EP Jr (2006) Allelopathic, autotoxic, and hormetic effects of postharvest sugarcane residue. Agron J 98:1526–1531CrossRefGoogle Scholar
  132. Viator RP, Johnson RM, Richard EP Jr (2009a) Mechanical removal and incorporation of post-harvest residue effects on sugarcane ratoon yields. Sugar Cane Int 24:149–152Google Scholar
  133. Viator RP, Johnson RM, Boykin DL, Richard EP Jr (2009b) Sugarcane post-harvest residue management in the temperate climate of Louisiana. Crop Sci 49:1023–1028CrossRefGoogle Scholar
  134. Vogel KP (2004) Switchgrass. In: Moser L, Burson B, Sollenberger L (eds) Warm-season (C4) grasses. Am Soc Agron, Madison, pp 561–588Google Scholar
  135. Vogel KP, Mitchell RB (2008) Heterosis in switchgrass: biomass yield in swards. Crop Sci 48:2159–2164CrossRefGoogle Scholar
  136. West MAL, van Leeuwen H, Kozik A, Kliebenstein DJ, Doerge RW, St Clair DA, Michelmore RW (2006) High-density haplotyping with microarray-based expression and single feature polymorphism markers in Arabidopsis. Genome Res 16:787–795PubMedCrossRefGoogle Scholar
  137. Wu X, Zhao R, Bean SR, Seib PA, McLaren JS, Madl RL, Tuinstra MR, Lenz MC, Wang D (2007) Factors impacting ethanol production from grain sorghum in the dry-grind process. Cereal Chem 84:130–136CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • David I. Bransby
    • 1
  • Damian J. Allen
    • 2
  • Neal Gutterson
    • 3
  • Gregory Ikonen
    • 3
  • Edward RichardJr
    • 4
  • William Rooney
    • 5
  • Edzard van Santen
    • 1
  1. 1.Department of Agronomy and SoilsAuburn UniversityAuburnUSA
  2. 2.Mendel BioEnergy SeedsLafayetteUSA
  3. 3.Mendel Biotechnology, Inc.HaywardUSA
  4. 4.USDA-ARS Sugarcane Research UnitHoumaUSA
  5. 5.Department of Soil and Crop SciencesCollege StationUSA

Personalised recommendations