Enhancing the Automatic Generation of Hints with Expert Seeding

  • John Stamper
  • Tiffany Barnes
  • Marvin Croy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6095)


The Hint Factory is an implementation of our novel method to automatically generate hints using past student data for a logic tutor. One disadvantage of the Hint Factory is the time needed to gather enough data on new problems in order to provide hints. In this paper we describe the use of expert sample solutions to “seed” the hint generation process. We show that just a few expert solutions give significant coverage (over 50%) for hints. This seeding method greatly speeds up the time needed to reliably generate hints. We discuss how this feature can be integrated into the Hint Factory and some potential pedagogical issues that the expert solutions introduce.


Educational data mining Markov decision process 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnes, T., Stamper, J.: Toward Automatic Hint Generation for Logic Proof Tutoring Using Historical Student Data. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 373–382. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Barnes, T., Stamper, J., Lehmann, L., Croy, M.: A Pilot Study on Logic Proof Tutoring Using Hints Generated from Historical Student Data. In: Baker, R., Barnes, T., Beck, J. (eds.) Proceedings of the 1st International Conference on Educational Data Mining (EDM 2008), Montreal, Canada, pp. 197–201 (2008)Google Scholar
  3. 3.
    Barnes, T., Stamper, J.: Toward the extraction of production rules for solving logic proofs. In: Proc. 13th Intl. Conf. on Artificial Intelligence in Education, Educational Data Mining Workshop, Marina del Rey, CA (2007)Google Scholar
  4. 4.
    Beck, J., Woolf, B.P., Beal, C.R.: ADVISOR: A Machine Learning Architecture for Intelligent Tutor Construction. In: 7th National Conference on Artificial Intelligence, pp. 552–557. AAAI Press / The MIT Press (2000)Google Scholar
  5. 5.
    Croy, M., Barnes, T., Stamper, J.: Towards an Intelligent Tutoring System for propositional proof construction. In: Brey, P., Briggle, A., Waelbers, K. (eds.) European Computing and Philosophy Conference, pp. 145–155. IOS Publishers, Amsterdam (2007)Google Scholar
  6. 6.
    Fossati, D., Di Eugenio, B., Ohlsson, S., Brown, c., Chen, L., Cosejo, D.: I learn from you, you learn from me: How to make iList learn from students. In: Dimitrova, V., Mizoguchi, R., Du Boulay, B., Graesser, A. (eds.) Proc. 14th Intl. Conf. on Artificial Intelligence in Education, AIED 2009, Brighton, UK, pp. 186–195. IOS Press, Amsterdam (2009)Google Scholar
  7. 7.
    Koedinger, K.R., Baker, R.S.J.D., Cunningham, K., Skogsholm, A., Leber, B., Stamper, J.: A Data Repository for the EDM commuity: The PSLC DataShop. In: Romero, C., Ventura, S., Pechenizkiy, M., Baker, R.S.J.D. (eds.) Handbook of Educational Data Mining, CRC Press, Boca Raton (in press) (to appear)Google Scholar
  8. 8.
    Koedinger, K.R., Aleven, V., Heffernan, T., McLaren, B., Hockenberry, M.: Opening the door to non-programmers: Authoring intelligent tutor behavior by demonstration. In: 7th Intelligent Tutoring Systems Conference, Maceio, Brazil, pp. 162–173 (2004)Google Scholar
  9. 9.
    Mitrovic, A., Koedinger, K., Martin, B.: A comparative analysis of cognitive tutoring and constraint-based modeling. User Modeling, 313–322 (2003)Google Scholar
  10. 10.
    McLaren, B., Koedinger, K., Schneider, M., Harrer, A., Bollen, L.: Bootstrapping Novice Data: Semi-automated tutor authoring using student log files. In: Proc. Workshop on Analyzing Student-Tutor Interaction Logs to Improve Educational Outcomes. 7th Intl. Conf. Intelligent Tutoring Systems (ITS 2004), Maceió, Brazil (2004)Google Scholar
  11. 11.
    Nkambou, R., Mephu Nguifo, E., Fournier-Viger, P.: Using Knowledge Discovery Techniques to Support Tutoring in an Ill-Defined Domain. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 395–405. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Matsuda, N., Cohen, W.W., Sewall, J., Lacerda, G., Koedinger, K.R.: Predicting students performance with SimStudent that learns cognitive skills from observation. In: Luckin, R., Koedinger, K.R., Greer, J. (eds.) Proceedings of the international conference on Artificial Intelligence in Education, pp. 467–476. IOS Press, Amsterdam (2007)Google Scholar
  13. 13.
    Sutton, S., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • John Stamper
    • 1
  • Tiffany Barnes
    • 2
  • Marvin Croy
    • 3
  1. 1.Human-Computer Interaction InstituteCarnegie Mellon UniversityPittsburgh
  2. 2.Department of Computer ScienceUniversity of North Carolina at CharlotteCharlotte
  3. 3.Department of PhilosophyUniversity of North Carolina at CharlotteCharlotte

Personalised recommendations