Long Term Learning and Online Robot Behavior Adaptation for Individuals with Physical and Cognitive Impairments

  • Adriana Tapus
  • Cristian Tapus
  • Maja Matarić
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 62)


In this paper, we present an online adaptation approach and a long-term learning approach for socially assistive robotic (SAR) systems that aim to provide customized help protocols through motivation, encouragements, and companionship to users suffering from physical and/or cognitive changes related to stroke, aging and Alzheimer’s disease.


Reward Function Social Robot Game Level Term Learn Assistive Robotic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    American Alzheimer Association. About alzheimer’s disease statistics. American Alzheimer Association (November 2007)Google Scholar
  2. 2.
    Brewer, B.R., Klatzky, R., Matsuoka, Y.: Feedback distortion to overcome learned nonuse: A system overview. IEEE Engineering in Medicine and Biology 3, 1613–1616 (2003)Google Scholar
  3. 3.
    Burgar, C.G., Lum, P.S., Shor, P.C., Vander Loos, M.: Development of robots for rehabilitation therapy: the palo alto va/stanford experience. Journal of Rehabilitation research and Development 37(6), 639–652 (2000)Google Scholar
  4. 4.
    Feil-Seifer, D., Matarić, M.J.: Defining socially assistive robotics. In: Proc. IEEE International Conference on Rehabilitation Robotics (ICORR 2005), Chicago, Il, USA, June 2005, pp. 465–468 (2005)Google Scholar
  5. 5.
    Nourbakhsh, I., Fong, T., Dautenhahn, K.: A survey of socially interactive robots. Robotics and Autonomous Systems 42(3-4), 143–166 (2003)zbMATHCrossRefGoogle Scholar
  6. 6.
    Kidd, C., Taggart, W., Turkle, S.: A sociable robot to encourage social interaction among the elderly. In: IEEE International Conference on Robotics and Automation (ICRA), Orlando, USA (May 2006)Google Scholar
  7. 7.
    Libin, A., Cohen-Mansfield, J.: Therapeutic robocat for nursing home residents with dementia: Preliminary inquiry. Am J Alzheimers Dis Other Demen 19(2), 111–116 (2004)CrossRefGoogle Scholar
  8. 8.
    Marti, P., Giusti, L., Bacigalupo, M.: Dialogues beyond words. Interaction Studies (2008)Google Scholar
  9. 9.
    Michaud, F., Theberge-Turmel, C.: Mobile robotic toys and autism. In: Billard, A., Dautenhahn, K., Canamero, L., Edmonds, B. (eds.) Socially Intelligent Agents - Creating Relationships with Computers and Robots. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  10. 10.
    Tapus, A., Matarić, M.J.: User personality matching with hands-off robot for post-stroke rehabilitation therapy. In: Proc. International Symposium on Experimental Robotics(ISER 2006), Rio de Janeiro, Brazil (July 2006)Google Scholar
  11. 11.
    Tapus, A., Tapus, C., Matarić, M.J.: User-robot personality matching and robot behavior adaptation for post-stroke rehabilitation therapy. Intelligent Service Robotics 1(2), 169–183 (2008)CrossRefGoogle Scholar
  12. 12.
    Walton, M.: Meet paro, the therapeutic robot seal. In: CNN (2003)Google Scholar
  13. 13.
    Yanco, H.: Evaluating the performance of assistive robotic systems. In: Proc. of the Workshop on Performance Metrics for Intelligent Systems, Gaithersburg, MD, USA (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Adriana Tapus
    • 1
  • Cristian Tapus
    • 2
  • Maja Matarić
    • 3
  1. 1.ENSTA-ParisTechParisFrance
  2. 2.Research Scientist at Google Inc.Mountain ViewUSA
  3. 3.Computer Science DepartmentUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations