Advertisement

Using Virtual Articulations to Operate High-DoF Inspection and Manipulation Motions

  • Marsette Vona
  • David Mittman
  • Jeffrey S. Norris
  • Daniela Rus
Conference paper
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 62)

Abstract

We have developed a new operator interface system for high-DoF articulated robots based on the idea of allowing the operator to extend the robot’s actual kinematics with virtual articulations. These virtual links and joints can model both primary task DoF and constraints on whole-robot coordinated motion. Unlike other methods, our approach can be applied to robots and tasks of arbitrary kinematic topology, and allows specifying motion with a scalable level of detail. We present hardware results where NASA/JPL’s All-Terrain Hex-Legged Extra-Terrestrial Explorer (ATHLETE) executes previously challenging inspection and manipulation motions involving coordinated motion of all 36 of the robot’s joints.

Keywords

Inverse Kinematic Priority Level Goal Model Virtual Link Operator Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baerlocher, P., Boulic, R.: An inverse kinematics architecture enforcing an arbitrary number of strict priority levels. The Visual Computer 20, 402–417 (2004)CrossRefGoogle Scholar
  2. 2.
    Bier, E.A.: Snap-dragging: Interactive geometric design in two and three dimensions. PhD thesis, EECS Department, University of California, Berkeley (1988)Google Scholar
  3. 3.
    Flückiger, L.: A robot interface using virtual reality and automatic kinematics generator. In: International Symposium on Robotics, pp. 123–126 (1998)Google Scholar
  4. 4.
    Hauser, K., Bretl, T., Latombe, J.C., Wilcox, B.: Motion planning for a six-legged lunar robot. In: Proceedings of WAFR, pp. 301–316 (2006)Google Scholar
  5. 5.
    Hoffmann, C.M.: D-Cubed’s Dimensional Constraint Manager. Journal of Computing and Information Science in Engineering 1, 100–101 (2001)CrossRefGoogle Scholar
  6. 6.
    Mittman, D.S., Norris, J.S., Powell, M.W., Torres, R.J., McQuin, C., Vona, M.A.: Lessons Learned from All-Terrain Hex-Limbed Extra-Terrestrial Explorer Robot Field Test Operations at Moses Lake Sand Dunes, Washington. In: Proceedings of AIAA Space Conference (2008)Google Scholar
  7. 7.
    Chiacchio, P., Chiaverini, S., Sciavicco, L., Siciliano, B.: Closed-loop inverse kinematics schemes for constrained redundant manipulators with task space augmentation and task priority strategy. IJRR 10(4), 410–425 (1991)Google Scholar
  8. 8.
    Phillips, C.B., Zhao, J., Badler, N.I.: Interactive real-time articulated figure manipulation using multiple kinematic constraints. In: SIGGRAPH, pp. 245–250 (1990)Google Scholar
  9. 9.
    Pratt, J., Chew, C.M., Torres, A., Dilworth, P., Pratt, G.: Virtual model control an intuitive approach for bipedal locomotion. IJRR 20(2), 129–143 (2001)Google Scholar
  10. 10.
    Smith, R.: Open dynamics engine (2008), http://www.ode.org
  11. 11.
    SunSpiral, V., Chavez-Clemente, D., Broxton, M., Keely, L., Mihelich, P., Mittman, D., Collins, C.: FootFall: A ground based operations toolset enabling walking for the ATHLETE rover. In: Proceedings of AIAA Space Conference (2008)Google Scholar
  12. 12.
    Welman, C.: Inverse kinematics and geometric constraints for articulated figure manipulation. Master’s thesis, Simon Fraser University (1993)Google Scholar
  13. 13.
    Wilcox, B.H., Litwin, T., Biesiadecki, J., Matthews, J., Heverly, M., Morrison, J., Townsend, J., Ahmad, N., Sirota, A., Cooper, B.: ATHLETE: A cargo handling and manipulation robot for the moon. Journal of Field Robotics 24(5), 421–434 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marsette Vona
    • 1
  • David Mittman
    • 2
  • Jeffrey S. Norris
    • 2
  • Daniela Rus
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridge
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadena

Personalised recommendations