Towards Autonomous Wheelchair Systems in Urban Environments

  • Chao Gao
  • Michael Sands
  • John R. Spletzer
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 62)


In this paper, we explore the use of synthesized landmark maps for absolute localization of a smart wheelchair system outdoors. In this paradigm, three-dimensional map data are acquired by an automobile equipped with high precision inertial/GPS systems, in conjunction with light detection and ranging (LIDAR) systems, whose range measurements are subsequently registered to a global coordinate frame. The resulting map data are then synthesized a priori to identify robust, salient features for use as landmarks in localization. By leveraging such maps with landmark meta-data, robots possessing far lower cost sensor suites gain many of the benefits obtained from the higher fidelity sensors, but without the cost.We show that by using such a map-based localization approach, a smart wheelchair system outfitted only with a 2-D LIDAR and encoders was able to maintain accurate, global pose estimates outdoors over almost 1 km paths.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gao, C., Hoffman, I., Miller, T., Panzarella, T., Spletzer, J.: Autonomous Docking of a Smart Wheelchair for the Automated Transport and Retrieval System (ATRS). Journal of Field Robotics 25(4-5), 203–222 (2008)CrossRefGoogle Scholar
  2. 2.
    Buehler, M., Iagnemma, K., Singh, S.: Special issues on the 2007 darpa urban challenge. The Journal of Field Robotics 25(8-10) (August-October 2008)Google Scholar
  3. 3.
    Dissanayake, M., Newman, P., Clark, S., Durrant-Whyte, H., Csorba, M.: A solution to the simultaneous localization and map building (SLAM) problem. IEEE Trans. on Robotics and Automation 17(3), 229–241 (2001)CrossRefGoogle Scholar
  4. 4.
    Newman, P., Leonard, J.: Pure range-only subsea slam. In: IEEE International Conference on Robotics and Automation, Taiwan, China (September 2003)Google Scholar
  5. 5.
    Masson, F., Nieto, J., Guivant, J., Nebot, E.: Robust autonomous navigation and world representation in outdoor environments. Mobile Robots Perception and Navigation, 299–320 (2007)Google Scholar
  6. 6.
    United Nations, Population Division: World Urbanization Prospects (February 2008)Google Scholar
  7. 7.
    Zhao, H., Shibasaki, R.: Reconstructing textured cad model of urban environment using vehicle borne laser range scanners and line cameras. In: Second International Workshop on Computer Vision System (ICVS), Vancouver, Canada, pp. 284–295 (2001)Google Scholar
  8. 8.
    Frueh, C., Zakhor, A.: Reconstructing 3d city models by merging ground-based and airborne views. In: García, N., Salgado, L., Martínez, J.M. (eds.) VLBV 2003. LNCS, vol. 2849, pp. 306–313. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Georgiev, A., Allen, P.: Localization Methods for a Mobile Robot in Urban Environments. IEEE Trans. on Robotics 20(5), 851–864 (2004)CrossRefGoogle Scholar
  10. 10.
    Howard, A., Wolf, D.F., Sukhatme, G.S.: Towards 3d mapping in large urban environments. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Sendai, Japan, September 2004, pp. 419–424 (2004)Google Scholar
  11. 11.
    Jensen, B., Weingarten, J., Kolski, S., Siegwart, R.: Laser range imaging using mobile robots: From pose estimation to 3d-models. In: 1st Range Imaging Research Day, Zürich, Switzerland, September 2005, pp. 129–144 (2005)Google Scholar
  12. 12.
    Borrmann, D., Elseberg, J., Lingemann, K., Nüchter, A., Hertzberg, J.: Globally consistent 3d mapping with scan matching. Journal of Robotics and Autonomous Systems (JRAS) 56(2), 130–142 (2008)CrossRefGoogle Scholar
  13. 13.
    Educating Silicon, Google Street View - Soon in 3D? (April 2008),
  14. 14.
    Altermatt, M., Martinelli, A., Tomatis, N., Siegwart, R.: SLAM with Corner Features Based on a Relative Map. In: IEEE/RSJ IROS (October 2004)Google Scholar
  15. 15.
    Kingston, T., Laflamme, C.: Automated road sign detection and recognition. Journal of the International Municipal Signal Association, 46–49 (January/February 2007)Google Scholar
  16. 16.
    Ramos, F., Nieto, J., Durrant-Whyte, H.: Recognising and Modelling Landmarks to Close Loops in Outdoor SLAM. In: IEEE ICRA (March 2007)Google Scholar
  17. 17.
    Nieto, J., Bailey, T., Nebot, E.: Recursive scan-matching SLAM. Robotics and Autonomous Systems 55, 39–49 (2007)CrossRefGoogle Scholar
  18. 18.
    Bohren, J., Derenick, J., Foote, T., Keller, J., Kushleyev, A., Lee, D., Satterfield, B., Spletzer, J., Stewart, A., Vernaza, P.: Little Ben: The Ben Franklin Racing Team’s Entry in the 2007 DARPA Urban Challenge. Journal of Field Robotics (2008) (accepted for publication)Google Scholar
  19. 19.
    Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM (1981)Google Scholar
  20. 20.
    Thrun, S.: Robotic mapping: A survey. Tech. Rep. CMU-CS-02-111, Carnegie Mellon University (2002)Google Scholar
  21. 21.
    Intel Corporation, OpenCV,

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Chao Gao
    • 1
  • Michael Sands
    • 1
  • John R. Spletzer
    • 1
  1. 1.Lehigh UniversityBethlehemUSA

Personalised recommendations