Outdoor Downward-Facing Optical Flow Odometry with Commodity Sensors

  • Michael Dille
  • Ben Grocholsky
  • Sanjiv Singh
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 62)


Positioning is a key task in most field robotics applications but can be very challenging in GPS-denied or high-slip environments. A common tactic in such cases is to position visually, and we present a visual odometry implementation with the unusual reliance on optical mouse sensors to report vehicle velocity. Using multiple kilometers of data from a lunar rover prototype,we demonstrate that, in conjunction with a moderate-grade inertial measurement unit, such a sensor can provide an integrated pose stream that is at times more accurate than that achievable by wheel odometry and visibly more desirable for perception purposes than that provided by a high-end GPS-INS system. A discussion of the sensor’s limitations and several drift mitigating strategies attempted are presented.


Mobile Robot Drift Rate Angular Rate Optical Integration Visual Odometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    AirRobot GmbH: AirRobot website (2009),
  2. 2.
    Allen, C.W., Cox, A.N.: Allen’s Astrophysical Quantities. Springer, Heidelberg (2000)Google Scholar
  3. 3.
    Baldwin, R.: A Fundamental Survey of the Moon. McGraw-Hill, New York (1965)Google Scholar
  4. 4.
    Bartlett, P., Wettergreen, D., Whittaker, W.: Design of the scarab rover for mobility and drilling in lunar cold traps. In: International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS), Los Angeles, CA (2008)Google Scholar
  5. 5.
    Chung, H., Ojeda, L., Borenstein, J.: Accurate mobile robot dead-reckoning with a precision-calibrated fiber optic gyroscope. Trans. on Robotics and Automation 17(1), 80–84 (2001)CrossRefGoogle Scholar
  6. 6.
    Griffiths, S., et al.: Maximizing miniature aerial vehicles. Robotics & Automation Mag. (2006)Google Scholar
  7. 7.
    Horn, B.K., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1982)CrossRefGoogle Scholar
  8. 8.
    Kelly, A.: Mobile robot localization from large-scale appearance mosaics. International Journal of Robotics Research 19(11), 1104–1125 (2000)CrossRefGoogle Scholar
  9. 9.
    Kim, S., Lee, S.: Robust mobile robot velocity estimation using redundant number of optical mice, pp. 107–112 (2008), doi:10.1109/ICINFA.2008.4607977Google Scholar
  10. 10.
    Kuipers, J.B.: Quaternions and Rotations Sequences. Princeton University Press, Princeton (1999)Google Scholar
  11. 11.
    Maimone, M., Cheng, Y., Matthies, L.: Two years of visual odometry on the Mars Exploration Rovers: Field reports. J. Field Robot. 24(3), 169–186 (2007)CrossRefGoogle Scholar
  12. 12.
    Nourani-Vatani, N., Roberts, J., Srinivasan, M.V.: IMU aided 3D visual odometry for car-like vehicles, Canberra, Australia (2008)Google Scholar
  13. 13.
    NovAtel Inc.: HG 1700 SPAN-58 Specifications (2008),
  14. 14.
  15. 15.
    Palacin, J., Valgaon, I., Pernia, R.: The optical mouse for indoor mobile robot odometry measurement. Sensors and Actuators A: Physical 126(1), 141–147 (2006)CrossRefGoogle Scholar
  16. 16.
    Reina, G., Ojeda, L., Milella, A., Borenstein, J.: Wheel slippage and sinkage detection for planetary rovers. IEEE/ASME Transactions on Mechatronics 11(2), 185–195 (2006)CrossRefGoogle Scholar
  17. 17.
    Saripalli, S., Sukhatme, G.S.: Landing on a moving target using an autonomous helicopter. Field and Service Robotics, 277–286 (2003)Google Scholar
  18. 18.
    Sekimori, D., Miyazaki, F.: Precise dead-reckoning for mobile robots using multiple optical mouse sensors. Informatics in Control, Automation and Robotics II, 145–151 (2007)Google Scholar
  19. 19.
    Sorensen, D.: Online optical flow feedback for mobile robot localization/navigation. Master’s thesis, Texas A&M University (2003)Google Scholar
  20. 20.
    Wettergreen, D., et al.: Design and experimentation of a rover concept for lunar crater resource survey. In: AIAA Aerospace Sciences, Orlando, FL (2009)Google Scholar
  21. 21.
    Zufferey, J.C., Floreano, D.: Fly-inspired Visual Steering of an Ultralight Indoor Aircraft. IEEE Transactions on Robotics 22(1), 137–146 (2006), doi:10.1109/TRO.2005.858857CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michael Dille
    • 1
  • Ben Grocholsky
    • 1
  • Sanjiv Singh
    • 1
  1. 1.The Robotics InstituteCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations