Advertisement

Fast Algorithms for min independent dominating set

  • Nicolas Bourgeois
  • Bruno Escoffier
  • Vangelis Th. Paschos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6058)

Abstract

We first devise a branching algorithm that computes a minimum independent dominating set with running time O *(20.424n ) and polynomial space. This improves the O *(20.441n ) result by (S. Gaspers and M. Liedloff, A branch-and-reduce algorithm for finding a minimum independent dominating set in graphs, Proc. WG’06). We then study approximation of the problem by moderately exponential algorithms and show that it can be approximated within ratio 1 + ε, for any ε> 0, in a time smaller than the one of exact computation and exponentially decreasing with ε. We also propose approximation algorithms with better running times for ratios greater than 3.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alimonti, P., Calamoneri, T.: Improved Approximations of Independent Dominating Set in Bounded Degree Graphs. In: D’Amore, F., Marchetti-Spaccamela, A., Franciosa, P.G. (eds.) WG 1996. LNCS, vol. 1197, pp. 2–16. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  2. 2.
    Bourgeois, N., Escoffier, B., Paschos, V.T.: Efficient Approximation of Combinatorial Problems by Moderately Exponential Algorithm. In: Proc. of WADS 2009. LNCS, vol. 5664, pp. 507–518. Springer, Heidelberg (2009)Google Scholar
  3. 3.
    Bourgeois, N., Escoffier, B., Paschos, V.T.: Approximation of min coloring by moderately exponential algorithms. Inf. Process. Lett. 109(16), 950–954 (2009)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Byskov, J.M.: Enumerating maximal independent sets with applications to graph colouring. Oper. Res. Lett. 32(6), 547–556 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cygan, M., Kowalik, L., Wykurz, M.: Exponential-time approximation of weighted set cover. Inf. Process. Lett. 109(16), 957–961 (2009)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Fomin, F.V., Grandoni, F., Kratsch, D.: A measure and conquer approach for the analysis of exact algorithms. Journal of the ACM 56(5) (2009)Google Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and intractability. A guide to the theory of NP-completeness. W. H. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  8. 8.
    Gaspers, S., Liedloff, M.: A branch-and-reduce algorithm for finding a minimum independent dominating set in graphs. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 78–89. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Halldórsson, M.M.: Approximating the minimum maximal independence number. Inform. Process. Lett. 46, 169–172 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Inform. Process. Lett. 27, 119–123 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Moon, J.W., Moser, L.: On cliques in graphs. Israel J. of Mathematics 3, 23–28 (1965)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nicolas Bourgeois
    • 1
  • Bruno Escoffier
    • 1
  • Vangelis Th. Paschos
    • 1
  1. 1.LAMSADECNRS and Université Paris-DauphineParisFrance

Personalised recommendations