A Linear Time Algorithm for the Minimum Spanning Caterpillar Problem for Bounded Treewidth Graphs

  • Michael J. Dinneen
  • Masoud Khosravani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6058)


We consider the Minimum Spanning Caterpillar Problem (MSCP) in a graph where each edge has two costs, spine (path) cost and leaf cost, depending on whether it is used as a spine or a leaf edge. The goal is to find a spanning caterpillar in which the sum of its edge costs is the minimum. We show that the problem has a linear time algorithm when a tree decomposition of the graph is given as part of the input. Despite the fast growing constant factor of the time complexity of our algorithm, it is still practical and efficient for some classes of graphs, such as outerplanar, series-parallel (K 4 minor-free), and Halin graphs. We also briefly explain how one can modify our algorithm to solve the Minimum Spanning Ring Star and the Dual Cost Minimum Spanning Tree Problems.


spanning caterpillars treewidth networks topology optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baldacci, R., Dell’Amico, M., Salazar González, J.: The capacitated-ring-star problem. Operations Research 55(6), 1147–1162 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bodlaender, H.L.: Treewidth: Structure and algorithms. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 11–25. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics (B), pp. 193–242. Elsevier, Amsterdam (1990)Google Scholar
  5. 5.
    Dinneen, M.J.: Practical enumeration methods for graphs of bounded pathwidth and treewidth. Technical Report CDMTCS–055, Center for Discrete Mathematics and Theoretical Computer Science, Auckland (1997)Google Scholar
  6. 6.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)Google Scholar
  7. 7.
    Hlinený, P., Oum, S.i., Seese, D., Gottlob, G.: Width parameters beyond tree-width and their applications. Comput. J. 51(3), 326–362 (2008)CrossRefGoogle Scholar
  8. 8.
    Labbé, M., Laporte, G., Martín, I.R., González, J.J.S.: The ring star problem: Polyhedral analysis and exact algorithm. Networks 43(3), 177–189 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Robertson, N., Seymour, P.D.: Graph minors. II. algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Simonetti, L., Frota, Y., de Souza, C.C.: An exact method for the minimum caterpillar spanning problem. In: Cafieri, S., Mucherino, A., Nannicini, G., Tarissan, F., Liberti, L. (eds.) CTW, pp. 48–51 (2009)Google Scholar
  11. 11.
    Tan, J., Zhang, L.: The consecutive ones submatrix problem for sparse matrices. Algorithmica 48(3), 287–299 (2007)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michael J. Dinneen
    • 1
  • Masoud Khosravani
    • 1
  1. 1.Department of Computer ScienceThe University of AucklandAucklandNew Zealand

Personalised recommendations