Advertisement

Strong Orientations of Planar Graphs with Bounded Stretch Factor

  • Evangelos Kranakis
  • Oscar Morales Ponce
  • Ladislav Stacho
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6058)

Abstract

We study the problem of orienting some edges of given planar graph such that the resulting subdigraph is strongly connected and spans all vertices of the graph. We are interested in orientations with minimum number of arcs and such that they produce a digraph with bounded stretch factor. Such orientations have applications into the problem of establishing strongly connected sensor network when sensors are equipped with directional antennae.

We present three constructions for such orientations. Let G = (V, E) be a connected planar graph without cut edges and let Φ(G) be the degree of largest face in G. Our constructions are based on a face coloring, say with λ colors. First construction gives a strong orientation with at most \(\left( 2 - \frac{4 \lambda - 6}{\lambda (\lambda - 1)} \right) |E|\) arcs and stretch factor at most Φ(G) − 1. The second construction gives a strong orientation with at most |E| arcs and stretch factor at most \((\Phi (G) - 1)^{\lceil \frac{\lambda + 1}{2} \rceil}\). The third construction can be applied to planar graphs which are 3-edge connected. It uses a particular 6-face coloring and for any integer k ≥ 1 produces a strong orientation with at most \(\left(1 - \frac{k}{10 (k + 1)}\right) |E|\) arcs and stretch factor at most Φ2 (G) (Φ(G) − 1)2 k + 4. These are worst-case upper bounds. In fact the stretch factors depend on the faces being traversed by a path.

Keywords and Phrases

Digraph Directional Antennae Planar Sensors Cut Edges Spanner Stretch Factor Strongly Connected 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bhattacharya, B., Hu, Y., Kranakis, E., Krizanc, D., Shi, Q.: Sensor network connectivity with multiple directional antennae of a given angular sum. In: IEEE IPDPS, 23rd International Parallel and Distributed Processing Symposium, May 25-29, pp. 344–351 (2009)Google Scholar
  2. [2]
    Borodin, O.V.: On acyclic colorings of planar graphs. Discrete Math. 25(3), 211–236 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Caragiannis, I., Kaklamanis, C., Kranakis, E., Krizanc, D., Wiese, A.: Communication in wireless networks with directional antennas. In: SPAA 2008: Proceedings of the twentieth annual symposium on Parallelism in algorithms and architectures, pp. 344–351. ACM Press, New York (2008)CrossRefGoogle Scholar
  4. [4]
    Czyzowicz, J., Dobrev, S., Gonzalez-Aguilar, H., Kralovic, R., Kranakis, E., Opatrny, J., Stacho, L., Urrutia, J.: Local 7-coloring for planar subgraphs of unit disk graphs. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 170–181. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. [5]
    Dobrev, S., Kranakis, E., Krizanc, D., Morales, O., Opatrny, J., Stacho, L.: Strong connectivity in sensor networks with given number of directional antennae of bounded angle (2009) (to appear)Google Scholar
  6. [6]
    Fukunaga, T.: Graph orientations with set connectivity requirements. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 265–274. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. [7]
    Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Transactions on Information Theory 46(2), 388–404 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Jensen, T., Toft, B.: Graph coloring problems. Wiley-Interscience, New York (1996)Google Scholar
  9. [9]
    Kranakis, E., Krizanc, D., Williams, E.: Directional versus omnidirectional antennas for energy consumption and k-connectivity of networks of sensors. In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 357–368. Springer, Heidelberg (2005)Google Scholar
  10. [10]
    Nash-Williams, C.S.J.A.: On orientations, connectivity and odd vertex pairings in finite graphs. Canad. J. Math. 12, 555–567 (1960)zbMATHMathSciNetGoogle Scholar
  11. [11]
    Parker, R., Rardin, R.: Guaranteed performance heuristics for the bottleneck traveling salesman problem. Oper. Res. Lett. 2(6), 269–272 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Robertson, N., Sanders, D., Seymour, P., Thomas, R.: The four-colour theorem. J. Comb. Theory Ser. B 70(1), 2–44 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Yi, S., Pei, Y., Kalyanaraman, S., Azimi-Sadjadi, B.: How is the capacity of ad hoc networks improved with directional antennas? Wireless Networks 13(5), 635–648 (2007)CrossRefGoogle Scholar
  14. [14]
    Zhang, H., He, X.: On even triangulations of 2-connected embedded graphs. SIAM J. Comput. 34(3), 683–696 (2005)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Evangelos Kranakis
    • 1
  • Oscar Morales Ponce
    • 1
  • Ladislav Stacho
    • 2
  1. 1.School of Computer ScienceCarleton UniversityOttawaCanada
  2. 2.Department of MathematicsSimon Fraser UniversityBurnabyCanada

Personalised recommendations