Algorithms for Extracting Timeliness Graphs

  • Carole Delporte-Gallet
  • Stéphane Devismes
  • Hugues Fauconnier
  • Mikel Larrea
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6058)


We consider asynchronous message-passing systems in which some links are timely and processes may crash. Each run defines a timeliness graph among correct processes: (p,q) is an edge of the timeliness graph if the link from p to q is timely (that is, there is a bound on communication delays from p to q). The main goal of this paper is to approximate this timeliness graph by graphs having some properties (such as being trees, rings, ...). Given a family S of graphs, for runs such that the timeliness graph contains at least one graph in S then using an extraction algorithm, each correct process has to converge to the same graph in S that is, in a precise sense, an approximation of the timeliness graph of the run. For example, if the timeliness graph contains a ring, then using an extraction algorithm, all correct processes eventually converge to the same ring and in this ring all nodes will be correct processes and all links will be timely.

We first present a general extraction algorithm and then a more specific extraction algorithm that is communication efficient (i.e., eventually all the messages of the extraction algorithm use only links of the extracted graph).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Stable leader election. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 108–122. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing omega with weak reliability and synchrony assumptions. In: PODC, pp. 306–314 (2003)Google Scholar
  3. 3.
    Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-efficient leader election and consensus with limited link synchrony. In: Chaudhuri, S., Kutten, S. (eds.) PODC, pp. 328–337. ACM, New York (2004)CrossRefGoogle Scholar
  4. 4.
    Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing omega in systems with weak reliability and synchrony assumptions. Distributed Computing 21(4), 285–314 (2008)CrossRefGoogle Scholar
  5. 5.
    Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. Journal of the ACM 43(2), 225–267 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dolev, D., Dwork, C., Stockmeyer, L.J.: On the minimal synchronism needed for distributed consensus. Journal of the ACM 34(1), 77–97 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the presence of partial synchrony. Journal of the ACM 35(2), 288–323 (1988)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Delporte Gallet, C., Devismes, S., Fauconnier, H., Larrea, M.: Algorithms For Extracting Timeliness Graphs,
  9. 9.
    Hadzilacos, V., Toueg, S.: A modular approach to fault-tolerant broadcasts and related problems. Tech. Rep. TR 94-1425, Department of Computer Science, Cornell University (1994)Google Scholar
  10. 10.
    Hutle, M., Malkhi, D., Schmid, U., Zhou, L.: Chasing the weakest system model for implementing omega and consensus. IEEE Trans. Dependable Sec. Comput. 6(4), 269–281 (2009)CrossRefGoogle Scholar
  11. 11.
    Larrea, M., Arévalo, S., Fernández, A.: Efficient algorithms to implement unreliable failure detectors in partially synchronous systems. In: Jayanti, P. (ed.) DISC 1999. LNCS, vol. 1693, pp. 34–48. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Mostéfaoui, A., Mourgaya, E., Raynal, M.: Asynchronous implementation of failure detectors. In: DSN, pp. 351–360. IEEE Computer Society, Los Alamitos (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Carole Delporte-Gallet
    • 1
  • Stéphane Devismes
    • 2
  • Hugues Fauconnier
    • 1
  • Mikel Larrea
    • 3
  1. 1.LIAFAUniversité Paris Diderot 
  2. 2.VERIMAG UMR 5104Université Joseph Fourier, Grenoble I 
  3. 3.University of the Basque Country, UPV/EHU 

Personalised recommendations