Skip to main content

A Possible Mechanism for Controlling Timing Representation in the Cerebellar Cortex

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6063))

Abstract

We have developed a network model of cerebellar cortex, in which granular cells’ activities represent a passage of time from the onset of a conditioned stimulus (CS). Long-term depression of parallel fiber synapses at Purkinje cells (PCs) encodes an interstimulus interval between onsets of a CS and an unconditioned stimulus (US) as cessation of PC firing, resulting in the emission of a conditioned response (CR) from cerebellar nucleus neurons. In this study, we show that a change in the strength of a CS extends or compresses spike trains of granule cells in the time dimension, suggesting controllability of CR timings flexibly after conditioning. Because PCs alone are insufficient to read out a modified interstimulus interval, we add stellate cells (SCs) inhibiting PCs. Thereby, after conditioning, PCs are shown to stop firing earlier or later than the US timing for a CS stronger or weaker than the CS during conditioning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ito, M.: Cerebellum and Neural Control. Raven Press, Hewlett (1984)

    Google Scholar 

  2. Yamazaki, T., Tanaka, S.: Neural Modeling of an Internal Clock. Neural Comput. 17, 1032–1058 (2005)

    Article  MATH  Google Scholar 

  3. Mauk, M.D., Donegan, N.H.: A Model of Pavlovian Eyelid Conditioning Based on the Synaptic Organization of the Cerebellum. Learn. Mem. 3, 130–158 (1997)

    Article  Google Scholar 

  4. Hesslow, G., Yeo, C.H.: The Functional Anatomy of Skeletal Conditioning. In: A Neuroscientist’s Guide to Classical Conditioning. Springer, New York (2002)

    Google Scholar 

  5. Christian, K.M., Thompson, R.F.: Neural Substrates of Eyeblink Conditioning: Acquisition and Retention. Learn. Mem. 11, 427–455 (2003)

    Article  Google Scholar 

  6. De Zeeuw, C.I., Yeo, C.H.: Time and Tide in Cerebellar Memory Formation. Curr. Opin. Neurobiol. 15, 667–674 (2005)

    Article  Google Scholar 

  7. Maex, R., De Schutter, E.: Synchronization of Golgi and Granule Cell Firing in a Detailed Network Model of the Cerebellar Granule Cell Layer. J. Neurophysiol. 80, 2521–2537 (1998)

    Google Scholar 

  8. Palkovits, M., Magyar, P., Szentágothai, J.: Quantitative Histological Analysis of the Cerebellar Cortex in the Cat II Cell Numbers and Densities in the Granular Layer. Brain Res. 32, 13–32 (1971)

    Google Scholar 

  9. Mugnaini, E., Atluri, R.L., Houk, J.C.: Fine Structure of Granular Layer in Turtle Cerebellum with Emphasis on Large Glomeruli. J. Neurophysiol. 37, 1–29 (1974)

    Google Scholar 

  10. Yamazaki, T., Tanaka, S.: A Spiking Network Model for Passage-of-time Representation in the Cerebellum. Eur. J. Neurosci. 26, 2279–2292 (2007b)

    Article  Google Scholar 

  11. Dieudonné, S.: Submillisecond Kinetics and Low Efficacy of Parallel Fibre-Golgi Cell Synaptic Currents in the Rat Cerebellum. J. Physiol. 510, 845–866 (1998)

    Article  Google Scholar 

  12. Wong, R.K.S., Stewart, M.: Different Firing Patterns Generated in Dendrites and Somata of CA1 Pyramidal Neurones in Guinea-pig Hippocampus. J. Physiol. 457, 675–687 (1992)

    Google Scholar 

  13. Stuart, G.J., Sakmann, B.: Active Propagation of Somatic Action Potentials into Neocortical Pyramidal Cell Dendrites. Nature 367, 69–72 (1994)

    Article  Google Scholar 

  14. Misra, C., Brickley, S.G., Farrant, M., Cull-Candy, S.G.: Identification of Subunits Contributing to Synaptic and Extrasynaptic NMDA Receptors in Golgi Cells of the Rat Cerebellum. J. Physiol. 1, 147–162 (2000)

    Article  Google Scholar 

  15. Freeman, J.H., Muckler Jr., A.S.: Developmental Changes in Eyeblink Conditioning and Neuronal Activity in the Pontine Nuclei. Learn. Mem. 10, 337–345 (2003)

    Article  Google Scholar 

  16. Jirenhed, D., Bengtsson, F., Hesslow, G.: Acquisition, Extinction, and Reacquisition of a Cerebellar Cortical Memory Trace. J. Neurosci. 27, 2493–2502 (2007)

    Article  Google Scholar 

  17. Ivry, R.B., Spencer, R.M.: The Neural Representation of Time. Curr. Opin. Neurobiol. 14(2), 225–232 (2004)

    Article  Google Scholar 

  18. Svensson, P., Ivarsson, M., Hesslow, G.: Involvement of the Cerebellum in a New Temporal Property of the Conditioned Eyeblink Response. Prog. Brain Res. 124, 317–323 (2000)

    Article  Google Scholar 

  19. Rancillac, A., Crépel, F.: Synapses between Parallel Fibres and Dtellate Cells Express Long-term Changes in Synaptic Efficacy in Rat Cerebellum. J. Physiol. 554(Pt. 3), 707–720 (2004)

    Google Scholar 

  20. Marr, D.: A Theory of Cerebellar Cortex. J. Physiol. (Lond) 202, 437–470 (1969)

    Google Scholar 

  21. Albus, J.S.: A Theory of Cerebellar Function. Math. Biosci. 10, 25–61 (1971)

    Article  Google Scholar 

  22. Daniel, M., Wolpert, R., Miall, C., Kawato, M.: Internal Models in the Cerebellum. Trends in Cognitive Sciences 2(9), 338–347 (1998)

    Article  Google Scholar 

  23. Ito, M.: Control of Mental Activities by Internal Models in the Cerebellum. Nat. Rev. Neurosci. 9(4), 304–313 (2008)

    Article  Google Scholar 

  24. Yamazaki, T., Tanaka, S.: The Cerebellum as a Liquid State Machine. Neural Networks 20(3), 290–297 (2007a)

    Article  MATH  Google Scholar 

  25. Maass, W., Natschläger, T., Markram, H.: Real-time Computing without Stable States: a New Framework for Neural Computation Based on Perturbations. Neural Comput. 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Honda, T., Yamazaki, T., Tanaka, S., Nishino, T. (2010). A Possible Mechanism for Controlling Timing Representation in the Cerebellar Cortex. In: Zhang, L., Lu, BL., Kwok, J. (eds) Advances in Neural Networks - ISNN 2010. ISNN 2010. Lecture Notes in Computer Science, vol 6063. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13278-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13278-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13277-3

  • Online ISBN: 978-3-642-13278-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics