Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 295))

  • 553 Accesses

Abstract

The problem of shape analysis has played an important role in the area of image analysis, computer vision and pattern recognition. In this paper, we present a new method for shape decomposition. The proposed method is based on a refined morphological shape decomposition process.We provide two more analysis for morphological shape decomposition. The first step is scale invariant analysis. We use a scale hierarchy structure to find the invariant parts in all different scale level. The second step is noise deletion. We use graph energy analysis to delete the parts which have minor contribution to the average graph energy. Our methods can solve two problems for morphological decomposition - scale invariant and noise. The refined decomposed shape can then be used to construct a graph structure. We experiment our method on shape analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bai, X., Latecki, L.J., Liu, W.Y.: Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Trans. PAMI 29(3), 449–462 (2007)

    Google Scholar 

  2. Luo, B., Wilson, R.C., Hancock, E.R.: A spectral approach to learning structural variations in graphs. Pattern Recognition 39, 1188–1198 (2006)

    Article  MATH  Google Scholar 

  3. Chung, F.R.K.: Spectral graph theory. American Mathematical Society, Reading (1997)

    MATH  Google Scholar 

  4. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, p. 484. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 1, 91–110 (2004)

    Article  Google Scholar 

  6. Gutman, I., Zhou, B.: Laplacian energy of a graph. Linear Algebra and its Applications 44, 29–37 (2006)

    Article  MathSciNet  Google Scholar 

  7. Kim, D.H., Yun, I.D., Lee, S.U.: A new shape decomposition scheme for graph-based representation. Pattern Recognition 38(5), 673–689 (2005)

    Article  Google Scholar 

  8. Kimia, B.B., Tannenbaum, A.R., Zucker, S.W.: Shapes, shocks, and deformations. Int. J. Computer Vision 15, 189–224 (1995)

    Article  Google Scholar 

  9. Klassen, Srivastava, A., Mio, W., Joshi, S.H.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 372–383 (2004)

    Article  Google Scholar 

  10. Latecki, L.J., Lakamper, R.: Convexity rule for shape decomposition based on discrete contour evolution. Computer Vision and Image Understanding 77, 441–454 (1999)

    Article  Google Scholar 

  11. Lee, C.G., Small, C.G.: Multidimensional scaling of simplex shapes. Pattern Recognition 32, 1601–1613 (1999)

    Article  Google Scholar 

  12. Murase, H., Nayar, S.K.: Illumination planning for object recognition using parametric eigenspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 1219–1227 (1994)

    Article  Google Scholar 

  13. Trinh, N., Kimia, B.B.: A symmetry-based generative model for shape. In: International Conference on Computer Vision (2007)

    Google Scholar 

  14. Pitas, I., Venetsanopoulos, A.N.: Morphological shape decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 12(1), 38–45 (1990)

    Article  Google Scholar 

  15. Shokoufandeh, A., Dickinson, S., Siddiqi, K., Zucker, S.: Indexing using a spectral encoding of topological structure. In: International Conference on Computer Vision and Pattern Recognition, pp. 491–497 (1999)

    Google Scholar 

  16. Torsello, A., Hancock, E.R.: A skeletal measure of 2d shape similarity. Computer Vision and Image Understanding 95(1), 1–29 (2004)

    Article  Google Scholar 

  17. Xiao, B., Hancock, E.R.: Clustering shapes using heat content invariants, pp. 1169–1172 (2005)

    Google Scholar 

  18. Xiao, B., Hancock, E.R.: A spectral generative model for graph structure. In: SSPR/SPR, pp. 173–181 (2006)

    Google Scholar 

  19. Xiao, B., Song, Y.-Z., Hall, P.M.: Learning object classes from structure. In: British Machine Vision Conference, Warwich, vol. 1407, pp. 207–217 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Luyuan, C., Meng, Z., Shang, L., Xiaoyan, M., Xiao, B. (2010). Shape Decomposition for Graph Representation. In: Lee, R., Ma, J., Bacon, L., Du, W., Petridis, M. (eds) Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing 2010. Studies in Computational Intelligence, vol 295. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13265-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13265-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13264-3

  • Online ISBN: 978-3-642-13265-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics