Economics of Gambling on Sports: A Multistage Stochastic Programming Approach to American Jai Alai Gambling Strategies

  • Qipeng P. Zheng
  • Yingyan Lou
  • Panos M. Pardalos
Chapter

Abstract

With the increased gambling tolerance, the economic stake of gambling on sports is growing bigger than ever before. One common type is the para mutual gambling, where the gamblers bet on the results of games, such as Jai Alai, dog racing, horse racing, etc. Uncertainties lie both in the game itself and in the bets made by all gamblers. This study attempts to develop the optimum betting strategies for Jai Alai games based on the rules, the historical results and the random returns of each game. Two main concerns of this study are: modeling the randomness in both the game and the gambler sides, and formulating multistage stochastic mixed-integer models for the strategy-making problem to maximize the return and control the risk as well.

Referneces

  1. Andreff, W., & Szymańki, S. (2006). Handbook on the economics of sport. Cheltenham: Edward Elgar.Google Scholar
  2. Bertsekas, D. P. (1987). Dynamic programming: Deterministic and stochastic models. Englewood Cliffs, NJ: Prentic-Hall, Inc.Google Scholar
  3. Birge, J. R., & Louveaux, F. (1997). Introduction to stochastic programming. New York: Springer.Google Scholar
  4. Brook, A., Kendirck, D., & Meeraus, A. (1992). GAMS: A user’s guide. South San Francisco, CA: The Scientific Press.Google Scholar
  5. Butenko, S., Gil-Lafuente, J., & Pardalos, P. M. (2004). Economics, management and optimization in sports. New York: Springer.Google Scholar
  6. Byrne, P. J., & Hesse, R. (1996). A Markov chain analysis of the game of Jai Alai. Mathematics Magazine, 69(4), 279–283.MathSciNetCrossRefGoogle Scholar
  7. Floudas, C. (1995) Nonlinear and mixed integer optimization: Fundamentals and application. New York: Oxford University Press.Google Scholar
  8. Goodfriend, M. J., & Friedman, J. H. (1975, November). A Monte-carlo analysis of Jai Alai. ORSA/TIMS Joint International Meeting.Google Scholar
  9. Goodfriend, M. J., & Friedman, J. H. (1977, November). Some further analysis of Jai Alai. ORSA/TIMS Joint International Meeting.Google Scholar
  10. Lane, D., & Ziemba, W. T. (2004). Jai Alai arbitrage strategies. The European Journal of Finance, 10, 353–369.CrossRefGoogle Scholar
  11. Moser, L. E. (1982). A mathematical analysis of the game of Jai Alai. The American Mathematical Monthly, 89(5), 292–300.MathSciNetCrossRefGoogle Scholar
  12. Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2(3), 21–41.Google Scholar
  13. Sackrowitz, H. (2004). Dynamic programming and time related strategies in sports. In S. Butenko, J. Gil-Lafuente, & P. M. Pardalos (Eds.), Economics, management and optimization in sports. New York: Springer.Google Scholar
  14. Skiena, S. S. (1988). A fairer scoring system for Jai-Alai. Interface, 33(6), 35–41.Google Scholar
  15. Skiena, S. S. (2001). Calculated bets: Computers, gambling, and mathematical modeling to win. New York: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer-VerlagBerlin Heidelberg 2010

Authors and Affiliations

  • Qipeng P. Zheng
    • 1
  • Yingyan Lou
    • 2
  • Panos M. Pardalos
    • 1
  1. 1.Center for Applied Optimization, Department of Industrial & Systems EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Department of Civil, Construction and Environmental EngineeringThe University of AlabamaTuscaloosaUSA

Personalised recommendations