Time-Dependent Contraction Hierarchies and Approximation

  • Gernot Veit Batz
  • Robert Geisberger
  • Sabine Neubauer
  • Peter Sanders
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6049)

Abstract

Time-dependent Contraction Hierarchies provide fast and exact route planning for time-dependent large scale road networks but need lots of space. We solve this problem by the careful use of approximations of piecewise linear functions. This way we need about an order of magnitude less space while preserving exactness and accepting only a little slow down. Moreover, we use these approximations to compute an exact travel time profile for an entire day very efficiently. In a German road network, e.g., we compute exact time-dependent routes in less than 2 ms. Exact travel time profiles need about 33 ms and about 3 ms suffice for an inexact travel time profile that is just 1 % away from the exact result. In particular, time-dependent routing and travel time profiles are now within easy reach of web servers with massive request traffic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Batz, G.V., Delling, D., Sanders, P., Vetter, C.: Time-Dependent Contraction Hierarchies. In: Finocchi, I., Hershberger, J. (eds.) ALENEX 2009. SIAM, Philadelphia (2009)Google Scholar
  3. 3.
    Vetter, C.: Parallel Time-Dependent Contraction Hierarchies (2009), Student Research Project, http://algo2.iti.kit.edu/download/vetter_sa.pdf
  4. 4.
    Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. In: [12], pp. 319–333Google Scholar
  5. 5.
    Orda, A., Rom, R.: Shortest-Path and Minimum Delay Algorithms in Networks with Time-Dependent Edge-Length. Journal of the ACM 37(3), 607–625 (1990)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Delling, D., Nannicini, G.: Bidirectional Core-Based Routing in Dynamic Time-Dependent Road Networks. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 812–823. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Delling, D.: Time-Dependent SHARC-Routing. Algorithmica (2009); In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 332–343. Springer, Heidelberg (2008)Google Scholar
  8. 8.
    Brunel, E., Delling, D., Gemsa, A., Wagner, D.: Space-Efficient SHARC-Routing. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 47–58. Springer, Heidelberg (2010)Google Scholar
  9. 9.
    Neubauer, S.: Space Efficient Approximation of Piecewise Linear Functions (2009), Student Research Project, http://algo2.iti.kit.edu/download/neuba_sa.pdf
  10. 10.
    Imai, H., Iri, M.: An optimal algorithm for approximating a piecewise linear function. Journal of Information Processing 9(3), 159–162 (1987)MathSciNetGoogle Scholar
  11. 11.
    Nannicini, G., Delling, D., Liberti, L., Schultes, D.: Bidirectional A* Search for Time-Dependent Fast Paths. In: [12], pp. 334–346Google Scholar
  12. 12.
    McGeoch, C.C. (ed.): WEA 2008. LNCS, vol. 5038. Springer, Heidelberg (2008)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Gernot Veit Batz
    • 1
  • Robert Geisberger
    • 1
  • Sabine Neubauer
    • 1
  • Peter Sanders
    • 1
  1. 1.Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations