Skip to main content

Climate Over the Ages; Is the Environment Stable?

  • Chapter
  • First Online:
Oxygen and the Evolution of Life

Abstract

As described in Chaps. 3 and 4, the advent of oxygenic photosynthesis triggered worldwide environmental changes. A world that had been reductive passed over into a state in which free dioxygen was available in the oceans and the atmosphere. We have already described the likely catastrophic effects on an anaerobic biota, but the changes were much broader than that. Dioxygen in the seas led to major changes in seawater chemistry. Iron, which had previously been soluble as ferrous salts, was precipitated in the ferric form. Copper, which had been insoluble in the anaerobic ocean as cuprous sulphide (Cu+-state), now became moderately soluble in the cupric form (Cu++-state).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benton MJ (2005) When life nearly died: the greatest mass extinction of all time. Thames and Hudson, London

    Google Scholar 

  • Berner RA, Kothavala Z (2001) GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 301:182–204

    Article  CAS  Google Scholar 

  • Berner RA, Vandenbrooks JM, Ward PD (2007) Oxygen and evolution. Science 316:557–558

    Article  PubMed  CAS  Google Scholar 

  • Berger A, Loutre MF (2002) An exceptionally long interglacial ahead? Science 297:1287–1288

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya D, Medlin L (1998) Algal phylogeny and the origin of land plants. Plant Physiol 116:9–15

    Article  CAS  Google Scholar 

  • Bond G, Showers W, Cheseby M, Lotti R, Almasi P, de Menocal P, Priore P, Cullen H, Hajdas I, Bonani G (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278:1257–1266

    Article  CAS  Google Scholar 

  • Bond G, Kromer B, Beer J, Muscheler R, Evans MN, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science 294:2130–2136

    Article  PubMed  CAS  Google Scholar 

  • Braddy SJ, Poschmann M, Tetlie OE (2008) Giant claw reveals the largest ever arthropod. Biol Lett 4:106–109

    Article  PubMed  Google Scholar 

  • Childress JJ, Seibel BA (1998) Life at stable low oxygen levels: adaptation of animals to oceanic oxygen minimum layers. J Exp Biol 201:1223–1232

    PubMed  CAS  Google Scholar 

  • Conway-Morris S (2006) Darwin’s dilemma: the realities of the Cambrian explosion. Philos Trans R Soc Lond B Biol Sci 361:1069–1083

    Article  PubMed  Google Scholar 

  • Cox GFN, Weeks WF (1983) Equation for determining the gas and brine volumes in sea-ice samples. J Glaciol 29:306–316

    Google Scholar 

  • Crowley TJ (1998) Significance of tectonic boundary conditions for paleoclimate simulations. In: Crowley TJ, Burke K (eds) Tectonic boundary conditions for climate reconstruction. Oxford University Press, New York, pp 3–17

    Google Scholar 

  • Crutzen PJ, Steffen W (2003) How long have we been in the Antropocene era? Climate Change 61:251–257

    Article  Google Scholar 

  • Dawkins R (2004) The ancestor’s tale: a pilgrimage to the dawn of life, 1st edn. Mariner Books, New York

    Google Scholar 

  • Dudley R (1998) Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor reformance. J Exp Biol 201:1043–1050

    PubMed  CAS  Google Scholar 

  • Erwin DH (1993) The Great Paleozoic crisis; life and death in the Permian. Columbia University Press, New York

    Google Scholar 

  • Ferry JG, House CH (2006) The stepwise evolution of early life is driven by energy conservation. Mol Biol Evol 23:1286–1292

    Article  PubMed  CAS  Google Scholar 

  • Fortey R (1999) Life: a natural history of the first four billion years of life on Earth. Vintage Books, New York. ISBN 0-375-70261-X

    Google Scholar 

  • Frausto da Silva JJR, Williams RJP (2001) The biological chemistry of the elements: the inorganic chemistry of life. Oxford University Press, New York

    Google Scholar 

  • Gosselin M, Levasseur M, Wheeler PA, Horner RA, Booth BC (1997) New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep Sea Res II 44:1623–1644

    Article  CAS  Google Scholar 

  • Graham JB, Dudley R, Agullar N, Gans C (1995) Implications of the late Palaeozoic oxygen pulse from physiology and evolution. Nature 375:117–120

    Article  CAS  Google Scholar 

  • Hedges SB (2004) Molecular clocks and a biological trigger for neoproterozoic snowball Earth events and the Cambrian explosion. In: Doneghue PCJ, Smiti MP (eds) Telling the evolutionary time. Molecular clock and the fossil record. CRC, Boca Raton, pp 27–39

    Google Scholar 

  • Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B Biol Sci 361:903–915

    Article  PubMed  CAS  Google Scholar 

  • Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A Neoproterozoic snowball Earth. Science 281:1342–1346

    Article  PubMed  CAS  Google Scholar 

  • Horner RA, Ackley SF, Dieckmann GS, Gulliksen B, Hoshiai T, Legendre L, Melnikov IA, Reeburgh WS, Spindler M, Sullivan CW (1992) Ecology of sea ice biota. 1. Habitat, terminology, and methodology. Polar Biol 12:417–427

    Article  Google Scholar 

  • Kasting JF (2001) Earth history. The rise of atmospheric oxygen. Science 293:819–820

    Article  PubMed  CAS  Google Scholar 

  • Kasting JF (2004) When methane made climate. Sci Am 291:79–85

    Article  Google Scholar 

  • Kasting JF, Ono S (2006) Palaeoclimates: the first two billion years. Philos Trans R Soc Lond B Biol Sci 361:917–929

    Article  PubMed  CAS  Google Scholar 

  • Kerr RA (2008) Mass extinction. Most devastating mass extinction followed long bout of sea sickness. Science 222:359

    Article  Google Scholar 

  • Kerr RA (1987) Milankovitch climate cycles through the ages: Earth’s orbital variations that bring on ice ages have been modulating climate for hundreds of millions of years. Science 235:973–974

    Article  PubMed  CAS  Google Scholar 

  • Karner DB, Muller RA (2000) Paleoclimate: a causality problem for Milankovitch. Science 288:2143–2144

    Article  PubMed  CAS  Google Scholar 

  • Kirschvink IL, Gaidos ES, Bertani LE, Benkas NJ, Gatzmer J, Maepa L, Sternberger RE (2000) Paleoproterozoic snowball Earth: extreme climatic and geochemical global changes and its biological consequences. Proc Natl Acad Sci USA 97:1400–1405

    Article  PubMed  CAS  Google Scholar 

  • Krembs C, Deming J (2006) Sea ice: a refuge for life in polar seas? http://www.arctic.noaa.gov/essay_krembsdeming.html#ref7

  • Krembs C, Gradinger R, Spindler M (2000) Implications of brine channel geometry and surface area for the interaction of sympagic organisms in Arctic sea ice. J Exp Mar Ecol 243:55–80

    Article  Google Scholar 

  • Kukla G (2005) Saalian supercycle, Mindel/Riss interglacial and Milankovitch’s dating. Quatern Sci Rev 24:1573–1583

    Article  Google Scholar 

  • Masklin M (2004) Global warming: a very short introduction. Oxford University Press, Oxford, UK

    Google Scholar 

  • Moran JJ, House CH, Freeman KH, Ferry JG (2005) Trace methane oxidation studied in several Euryarchaeota under diverse conditions. Archaea 1:303–309

    Article  PubMed  CAS  Google Scholar 

  • Niedzwiedski G, Szrek P, Narkiewicz K, Narkiewicz M, Ahlberg PE (2010) Tetrapod trackways from the early Middle Devonian period of Poland. Nature 463:43–48

    Article  Google Scholar 

  • Paillard D (2001) Glacial cycles: towards a new paradigma. Rev Geophys 39:325–346

    Article  CAS  Google Scholar 

  • Pavlov AA, Kasting JF, Brown LL, Rages KA, Freedman R (2000) Greenhouse warming by CH4 in the atmosphere of early Earth. J Geophys Res Planets 105:11981–11990

    Article  CAS  Google Scholar 

  • Pavlov AA, Hurtgen MT, Kasting JF, Arthur MA (2003) Methane-rich proterozoic atmosphere? Geology 31:87–90

    Article  CAS  Google Scholar 

  • Pisani D, Poling LL, Lyons-Weiler M, Hedges SB (2004) The colonization of land by animals; molecular phylogeny and divergence times among arthropods. BMC Biol 2:1

    Article  PubMed  Google Scholar 

  • Rahmstorf S, Schellnhuber HJ (2006) Der Klimawandel – Diagnose, Prognose, Therapie. C.H. Beck, München. ISBN 3-406-50866-9

    Google Scholar 

  • Rieu R, Allen PA, Plötze M, Pettke T (2007) Climatic cycles during a Neoproterozoic “snowball” glacial epoch. Geology 35:299–302

    Article  CAS  Google Scholar 

  • Royer DL, Berner RA, Montanez IP, Tabor NJ, Beerling DJ (2004) CO2 as a primary driver of Phaneroerzoiv climate. GSA Today 14:4–10

    Article  Google Scholar 

  • Ruddiman WE (2000) Earths climate: past and future. Freeman, New York

    Google Scholar 

  • Scotese CR (2001) Atlas of Earth History, Volume 1, Paleogeography, PALEOMAP Project, Arlington, Texas, 52 pp

    Google Scholar 

  • Scotese CR (2009) Plate Tectonic and Paleogeographic maps and animations, PALEOMAP Project (www.scotese.com)

    Google Scholar 

  • Vermelic GJ (1989) The origin of skeletons. Paleos 4:585–589

    Article  Google Scholar 

  • Yin YG, Wang Y, Wang W, Shang QH, Cao CQ, Erwin DH (2000) Pattern of marine mass extinction near the Permian–Triassic boundary in South China. Science 289:432–436

    Article  Google Scholar 

  • Ward PD (ed) (2006) Out of Thin Air: Dinosaurs, Birds, and Earth's Ancient Atmosphere. The National Academic Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Decker .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Decker, H., van Holde, K.E. (2011). Climate Over the Ages; Is the Environment Stable?. In: Oxygen and the Evolution of Life. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13179-0_6

Download citation

Publish with us

Policies and ethics