Advertisement

Machine Learning Support for Human Articulation of Concepts from Examples – A Learning Framework

  • Gabriela Pavel
Part of the Communications in Computer and Information Science book series (CCIS, volume 73)

Abstract

We aim to show that machine learning methods can provide meaningful feedback to help the student articulate concepts from examples, in particular from images. Therefore we present here a framework to support the learning through human visual classifications and machine learning methods.

Keywords

concept learning machine learning visual environment learning framework 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Larkin, J., Herbert, S.: Why a diagram is (sometimes) worth ten thousand words. Cognitive Science 11, 65–99 (1987)CrossRefGoogle Scholar
  2. 2.
    Reber, A.S.: Implicit Learning and Tacit Knowledge. An Essay on the Cognitive Unconscious. Oxford Psychology Series, vol. 19. Oxford University Press, New York (1993)Google Scholar
  3. 3.
    Laurillard, D.: Rethinking University Teaching: A Conversational Framework for the Effective Use of Learning Technologies, 2nd edn. Routlege, London (2001)Google Scholar
  4. 4.
    Hsieh, H.-S., Shipman III, F.-M.: VITE: a visual interface supporting the direct manipulation of structured data using two-way mappings. In: Proceedings of the 5th international conference on Intelligent user interfaces, New Orleans, USA. ACM, New York (2000)Google Scholar
  5. 5.
    Scardamalia, M., Bereiter, C.: Computer support for knowledge-building communities. Journal of the Learning Sciences 3(3), 265–283 (1994)CrossRefGoogle Scholar
  6. 6.
    Rosch, E.: Reclaiming concepts. J. of Consciousness Studies 6(11-12), 61–77 (1999)Google Scholar
  7. 7.
    Reisberg, D.: Cognition: exploring the science of the mind. WW Norton & Co., NY (2006)Google Scholar
  8. 8.
    Stepp, E.R., Michalski, R.S.: Conceptual clustering: Inventing Goal-Oriented Classifications of Structured Objects. In: Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.) Machine Learning. An AI Approach, vol. 2. Morgan Kaufman, California (1986)Google Scholar
  9. 9.
    Nobrega, G.M., Castro, E.J.R., Ferneda, E., Cerri, S.A., Limam, F.: Machine learning at the learner’s hand: a support to theory formation in collaborative discovery learning environments. In: AI in computer Supportive Collaborative Learning, ECAI 2004, Spain (2004)Google Scholar
  10. 10.
  11. 11.
    Lave, J., Wenger, E.: Situated learning: legitimate peripheral participation. Cambridge University Press, England (1991)CrossRefGoogle Scholar
  12. 12.
    Winston, P.H.: Learning structural descriptions from examples. In: Winston, P.H. (ed.) The psychology of computer vision. Mc-Graw-Hill, NY (1975)Google Scholar
  13. 13.
    Sternberg, R.J., Smith, E.: The psychology of human thought. Cambridge University Press, Cambridge (1988)Google Scholar
  14. 14.
    Norvig, P., Russel, S.J.: Artificial Intelligence - A Modern Approach. Prentice Hall Series in AI, New Jersey (1995)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Gabriela Pavel
    • 1
  1. 1.Knowledge Media Institute (KMi)The Open UniversityUnited Kingdom

Personalised recommendations