A Scatter Search Based Approach to Solve the Reporting Cells Problem

  • Sónia M. Almeida-Luz
  • Miguel A. Vega-Rodríguez
  • Juan A. Gómez-Pulido
  • Juan M. Sánchez-Pérez
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 73)


This paper presents a new approach based on the Scatter Search (SS) algorithm, to solve the mobile Location Management problem using the Reporting Cells (RC) strategy. The RC problem is applied to achieve the best configuration of the mobile network, defining what cells should work as RC, with the objective of minimizing the costs involved. In this work we perform five distinct experiments with the aim of determining the best values for the Scatter Search parameters, when applied to the RC problem. We use 12 test networks with the objective of comparing the results achieved with those obtained through other algorithms from our previous work and by other authors. The experimental results prove that this SS based approach outperforms the results obtained by other approaches presented in the literature, which is very encouraging.


Scatter Search Reporting Cells Problem Optimization Location Management Mobile Networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tabbane, S.: Location Management methods for third generation mobile systems. IEEE Communications Magazine 35, 72–84 (1997)CrossRefGoogle Scholar
  2. 2.
    Wong, V.W.S., Leung, V.C.M.: Location management for next-generation personal communications networks. IEEE Network 14(5), 18–24 (2000)CrossRefGoogle Scholar
  3. 3.
    Bar-Noy, A., Kessler, I.: Tracking mobile users in wireless communications networks. IEEE Transactions on Information Theory 39, 1877–1886 (1993)zbMATHCrossRefGoogle Scholar
  4. 4.
    Almeida-Luz, S.M., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Applying differential evolution to the reporting cells problem. In: International Multiconference on Computer Science and Information Technology (IMCSIT 2008), Poland, pp. 65–71. IEEE Computer Society Press, USA (2008)CrossRefGoogle Scholar
  5. 5.
    Taheri, J., Zomaya, A.Y.: A modified hopfield network for mobility management. Wireless Communications and Mobile Computing 8, 355–367 (2008)CrossRefGoogle Scholar
  6. 6.
    Alba, E., Garca-Nieto, J., Taheri, J., Zomaya, A.Y.: New research in nature inspired algorithms for mobility management. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J., O’Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 1–10. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Glover, F.: Heuristics for integer programming using surrogate constraints. Decision Sciences 8, 156–166 (1977)CrossRefGoogle Scholar
  8. 8.
    Martí, R., Laguna, M., Glover, F.: Principles of scatter search. European Journal of Operational Research 169, 359–372 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Laguna, M., Hossell, K.P., Martí, R.: Scatter Search: methodology and implementation in C. Kluwer Academic Publishers, Norwell (2002)Google Scholar
  10. 10.
    Test Networks: (accessed on February 2010)
  11. 11.
    Subrata, R., Zomaya, A.Y.: A Comparison of three artificial life techniques for reporting cell planning in mobile computing. IEEE Transactions on Parallel and Distributed Systems 14(2), 142–153 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sónia M. Almeida-Luz
    • 1
  • Miguel A. Vega-Rodríguez
    • 2
  • Juan A. Gómez-Pulido
    • 2
  • Juan M. Sánchez-Pérez
    • 2
  1. 1.School of Technology and Management, Department of Informatics EngineeringPolytechnic Institute of LeiriaLeiriaPortugal
  2. 2.Dept. Technologies of Computers and Communications, Escuela PolitécnicaUniversity of ExtremaduraCáceresSpain

Personalised recommendations