Skip to main content

Complete Gradient Clustering Algorithm for Features Analysis of X-Ray Images

  • Conference paper
Information Technologies in Biomedicine

Abstract

Methods based on kernel density estimation have been successfully applied for various data mining tasks. Their natural interpretation together with suitable properties make them an attractive tool among others in clustering problems. In this paper, the Complete Gradient Clustering Algorithm has been used to investigate a real data set of grains. The wheat varieties, Kama, Rosa and Canadian, characterized by measurements of main grain geometric features obtained by X-ray technique, have been analyzed. The proposed algorithm is expected to be an effective tool for recognizing wheat varieties. A comparison between the clustering results obtained from this method and the classical k-means clustering algorithm shows positive practical features of the Complete Gradient Clustering Algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Charytanowicz, M., Kulczycki, P.: Nonparametric Regression for Analyzing Correlation between Medical Parameters. In: Pietka, E., Kawa, J. (eds.) Advances in Soft Computing - Information Technologies in Biomedicine. Springer, Heidelberg (2008)

    Google Scholar 

  2. Fukunaga, K., Hostetler, L.D.: The estimation of the gradient of a density function, with applications in Pattern Recognition. IEEE Transactions on Information Theory 21, 32–40 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  3. Kowalski, P., Łukasik, S., Charytanowicz, M., Kulczycki, P.: Data-Driven Fuzzy Modeling and Control with Kernel Density Based Clustering Technique. Polish Journal of Environmental Studies 17, 83–87 (2008)

    Google Scholar 

  4. Kulczycki, P.: Kernel Estimators for Systems Analysis. WNT, Warsaw (2005) (in Polish)

    Google Scholar 

  5. Kulczycki, P.: Kernel Estimators for Systems Research. In: Kulczycki, P., Hryniewicz, O., Kacprzyk, J. (eds.) Information Technologies in Systems Research. WNT, Warsaw (2007) (in Polish)

    Google Scholar 

  6. Kulczycki, P.: Kernel estimators in industrial applications. In: Prasad, B. (ed.) Soft Computing Applications in Industry. Springer, Berlin (2008)

    Google Scholar 

  7. Kulczycki, P., Charytanowicz, M.: Bayes Sharpening of Imprecise Information. International Journal of Applied Mathematics and Computer Science 15, 393–404 (2005)

    MATH  MathSciNet  Google Scholar 

  8. Kulczycki, P., Charytanowicz, M.: A Complete Gradient Clustering Algorithm Formed with Kernel Estimators. International Journal of Applied Mathematics and Computer Science 20 (2010) (in press)

    Google Scholar 

  9. Mirkin, B.: Clustering for Data Mining: A Data Recovery Approach. Chapman and Hall/CRC, London (2005)

    Book  MATH  Google Scholar 

  10. Niewczas, J., Woźniak, W.: Application of “GRAINS” program for characterisation of X-ray images of wheat grains at different moisture content. In: Xth Seminar, Properties of Water in Foods, Department of Food Engineering. Warsaw Agricultural University (1999)

    Google Scholar 

  11. Niewczas, J., Woźniak, W., Guc, A.: Attempt to application of image processing to evaluation of changes in internal structure of wheat grain. International Agrophysics 9, 343–347 (1995)

    Google Scholar 

  12. Rencher, M.: Methods of Multivariate Analysis. Wiley, New York (2004)

    Google Scholar 

  13. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1986)

    MATH  Google Scholar 

  14. Shouche, S.P., Rastogi, R., Bhagwat, S.G., Sainis, J.K.: Shape analysis of grain of Indian wheat varieties. Computers and Electronics in Agriculture 33, 55–76 (2001)

    Article  Google Scholar 

  15. Strumiłło, A., Niewczas, J., Szczypiński, P., Makowski, P., Woźniak, W.: Computer system for analysis of X-ray images of wheat grains. International Agrophysics 13, 133–140 (1999)

    Google Scholar 

  16. Utku, H., Koksel, H., Kayhan, S.: Classification of wheat grains by digital image analysis using statistical filters. Euphytica 100, 171–178 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Charytanowicz, M., Niewczas, J., Kulczycki, P., Kowalski, P.A., Łukasik, S., Żak, S. (2010). Complete Gradient Clustering Algorithm for Features Analysis of X-Ray Images. In: Piȩtka, E., Kawa, J. (eds) Information Technologies in Biomedicine. Advances in Intelligent and Soft Computing, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13105-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13105-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13104-2

  • Online ISBN: 978-3-642-13105-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics