Beyond Process Mining: From the Past to Present and Future

  • Wil M. P. van der Aalst
  • Maja Pesic
  • Minseok Song
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6051)

Abstract

Traditionally, process mining has been used to extract models from event logs and to check or extend existing models. This has shown to be useful for improving processes and their IT support. Process mining techniques analyze historic information hidden in event logs to provide surprising insights for managers, system developers, auditors, and end users. However, thus far, process mining is mainly used in an offline fashion and not for operational decision support. While existing process mining techniques focus on the process as a whole, this paper focuses on individual process instances (cases) that have not yet completed. For these running cases, process mining can used to check conformance, predict the future, and recommend appropriate actions. This paper presents a framework for operational support using process mining and details a coherent set of approaches that focuses on time information. Time-based operational support can be used to detect deadline violations, predict the remaining processing time, and recommend activities that minimize flow times. All of this has been implemented in ProM and initial experiences using this toolset are reported in this paper.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Mans, R.S., de Medeiros, A.K.A., Rozinat, A., Rubin, V., Song, M., Verbeek, H.M.W(E.), Weijters, A.J.M.M.T.: ProM 4.0: Comprehensive Support for Real Process Analysis. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 484–494. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F., Alves de Medeiros, A.K., Song, M., Verbeek, H.M.W.: Business Process Mining: An Industrial Application. Information Systems 32(5), 713–732 (2007)CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W.M.P., Rubin, V., van Dongen, B.F., Kindler, E., Günther, C.W.: Process Mining: A Two-Step Approach to Balance Between Underfitting and Overfitting. Software and Systems Modeling 9(1), 87–111 (2010)CrossRefGoogle Scholar
  4. 4.
    van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time Prediction Based on Process Mining. BPM Center Report BPM-09-04, BPMcenter.org (2009)Google Scholar
  5. 5.
    van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  6. 6.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow Logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Baresi, L., Ghezzi, C., Guinea, S.: Smart Monitors for Composed Services. In: ICSOC 2004: Proceedings of the 2nd International Conference on Service Oriented Computing, pp. 193–202. ACM Press, New York (2004)CrossRefGoogle Scholar
  8. 8.
    Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based Data. ACM Transactions on Software Engineering and Methodology 7(3), 215–249 (1998)CrossRefGoogle Scholar
  9. 9.
    Datta, A.: Automating the Discovery of As-Is Business Process Models: Probabilistic and Algorithmic Approaches. Information Systems Research 9(3), 275–301 (1998)CrossRefGoogle Scholar
  10. 10.
    van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle Time Prediction: When Will This Case Finally Be Finished? In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part I. LNCS, vol. 5331, pp. 319–336. Springer, Berlin (2008)Google Scholar
  11. 11.
    Feng, L., Guan, X., Guo, S., Gao, Y., Liu, P.: Predicting the Intrusion Intentions by Observing System Call Sequences. Computers and Security 23(3), 241–252 (2004)CrossRefGoogle Scholar
  12. 12.
    Ferreira, D.R., Gillblad, D.: Discovering Process Models from Unlabelled Event Logs. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 143–158. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Lazovik, A., Aiello, M., Papazoglou, M.: Associating Assertions with Business Processes and Monitoring their Execution. In: ICSOC 2004, pp. 94–104. ACM Press, New York (2004)CrossRefGoogle Scholar
  14. 14.
    Mahbub, K., Spanoudakis, G.: A Framework for Requirents Monitoring of Service Based Systems. In: ICSOC 2004, pp. 84–93. ACM Press, New York (2004)CrossRefGoogle Scholar
  15. 15.
    Resnick, P., Varian, H.R.: Recommender Systems. Communications of the ACM 40(3), 56–58 (1997)CrossRefGoogle Scholar
  16. 16.
    Rozinat, A., van der Aalst, W.M.P.: Conformance Checking of Processes Based on Monitoring Real Behavior. Information Systems 33(1), 64–95 (2008)CrossRefGoogle Scholar
  17. 17.
    Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering Simulation Models. Information Systems 34(3), 305–327 (2009)Google Scholar
  18. 18.
    Rozinat, A., Wynn, M., van der Aalst, W.M.P., ter Hofstede, A.H.M., Fidge, C.: Workflow Simulation for Operational Decision Support. Data and Knowledge Engineering 68(9), 834–850 (2009)CrossRefGoogle Scholar
  19. 19.
    Schonenberg, H., Weber, B., van Dongen, B.F., van der Aalst, W.M.P.: Supporting Flexible Processes Through Recommendations Based on History. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 51–66. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Vanderfeesten, I.T.P., Reijers, H.A., van der Aalst, W.M.P.: Product Based Workflow Support: Dynamic Workflow Execution. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 571–574. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Weber, B., Wild, W., Breu, R.: CBRFlow: Enabling Adaptive Workflow Management Through Conversational Case-Based Reasoning. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 434–448. Springer, Heidelberg (2004)Google Scholar
  22. 22.
    Zhou, B., Hui, S.C., Chang, K.: An Intelligent Recommender System Using Sequential Web Access Patterns. In: IEEE Conference on Cybernetics and Intelligent Systems, pp. 393–398 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Wil M. P. van der Aalst
    • 1
  • Maja Pesic
    • 1
  • Minseok Song
    • 2
  1. 1.Department of Mathematics and Computer ScienceEindhoven University of TechnologyThe Netherlands
  2. 2.School of Technology ManagementUlsan National University of Science and TechnologyUlsan Metropolitan CitySouth Korea

Personalised recommendations