Skip to main content

SA-REPC – Sequence Alignment with Regular Expression Path Constraint

  • Conference paper
Language and Automata Theory and Applications (LATA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6031))

  • 871 Accesses

Abstract

In this paper, we define a novel variation on the constrained sequence alignment problem, the Sequence Alignment with Regular Expression Path Constraint problem, in which the constraint is given in the form of a regular expression. Our definition extends and generalizes the existing definitions of alignment-path constrained sequence alignments to the expressive power of regular expressions. We give a solution for the new variation of the problem and demonstrate its application to integrate microRNA-target interaction patterns into the target prediction computation. Our approach can serve as an efficient filter for more computationally demanding target prediction filtration algorithms. We compare our implementation for the SA-REPC problem, cAlign, to other microRNA target prediction algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arslan, A.: Regular expression constrained sequence alignment. Journal of Discrete Algorithms 5(4), 647–661 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bartel, D.: MicroRNAs: target recognition and regulatory functions. Cell 136(2), 215–233 (2009)

    Article  Google Scholar 

  3. Bentwich, I.: Prediction and validation of microRNAs and their targets. FEBS letters 579(26), 5904–5910 (2005)

    Article  Google Scholar 

  4. Bernhart, S., Tafer, H., Mückstein, U., Flamm, C., Stadler, P., Hofacker, I.: Partition function and base pairing probabilities of RNA heterodimers. Algorithms for Molecular Biology 1(1), 3 (2006)

    Article  Google Scholar 

  5. Brennecke, J., Stark, A., Russell, R., Cohen, S.: Principles of MicroRNA–Target Recognition. PLoS Biol. 3(3), e85 (2005)

    Article  Google Scholar 

  6. Crochemore, M., Landau, G., Ziv-Ukelson, M.: A Subquadratic Sequence Alignment Algorithm for Unrestricted Scoring Matrices. SIAM Journal on Computing 32, 1654 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological sequence analysis. Cambridge Univ. Press, Cambridge (1998)

    MATH  Google Scholar 

  8. Griffiths-Jones, S., Grocock, R., van Dongen, S., Bateman, A., Enright, A.: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic acids research 34(Database Issue), D140 (2006)

    Article  Google Scholar 

  9. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge (January 1997)

    MATH  Google Scholar 

  10. Hirschberg, D.S.: Algorithms for the longest common subsequence problem. J. ACM 24(4), 664–675 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to automata theory, languages, and computation. Addison-Wesley, Reading (2006)

    Google Scholar 

  12. Hubbard, T., Andrews, D., Caccamo, M., Cameron, G., Chen, Y., Clamp, M., Clarke, L., Coates, G., Cox, T., Cunningham, F., et al.: Ensembl 2005. Nucleic Acids Research 33(Database Issue), D447 (2005)

    Article  Google Scholar 

  13. Jiang, M., Anderson, J., Gillespie, J., Mayne, M.: uShuffle: A useful tool for shuffling biological sequences while preserving the k-let counts. BMC bioinformatics 9(1), 192 (2008)

    Article  Google Scholar 

  14. John, B., Sander, C., Marks, D., et al.: Prediction of human microRNA targets. Methods In Molecular Biology 342, 101 (2006)

    Google Scholar 

  15. Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U., Segal, E.: The role of site accessibility in microRNA target recognition. Nature genetics 39(10), 1278–1284 (2007)

    Article  Google Scholar 

  16. Krek, A., Grün, D., Poy, M., Wolf, R., Rosenberg, L., Epstein, E., MacMenamin, P., da Piedade, I., Gunsalus, K., Stoffel, M., et al.: Combinatorial microRNA target predictions. Nature genetics 37(5), 495–500 (2005)

    Article  Google Scholar 

  17. Kucherov, G., Noé, L., Roytberg, M.: Multiseed lossless filtration. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 51–61 (2005)

    Google Scholar 

  18. Lewis, B., Burge, C., Bartel, D.: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1), 15–20 (2005)

    Article  Google Scholar 

  19. Lewis, B., Shih, I., Jones-Rhoades, M., Bartel, D., Burge, C.: Prediction of mammalian microRNA targets. Cell 115(7), 787–798 (2003)

    Article  Google Scholar 

  20. Lin, S., Johnson, S., Abraham, M., Vella, M., Pasquinelli, A., Gamberi, C., Gottlieb, E., Slack, F.: The C. elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Developmental Cell 4(5), 639–650 (2003)

    Article  Google Scholar 

  21. Maziere, P., Enright, A.: Prediction of microRNA targets. Drug discovery today 12(11-12), 452–458 (2007)

    Article  Google Scholar 

  22. Miranda, K., Huynh, T., Tay, Y., Ang, Y., Tam, W., Thomson, A., Lim, B., Rigoutsos, I.: A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126(6), 1203–1217 (2006)

    Article  Google Scholar 

  23. Mückstein, U., Tafer, H., Bernhard, S., Hernandez-Rosales, M., Vogel, J., Stadler, P., Hofacker, I.: Translational control by RNA-RNA interaction: Improved computation of RNA-RNA binding thermodynamics. BioInformatics Research and DevelopmentBIRD 13, 114–127 (2008)

    Article  Google Scholar 

  24. Myers, G., Selznick, S., Zhang, Z., Miller, W.: Progressive multiple alignment with constraints. Journal of Computational Biology 3(4), 563–572 (1996)

    Article  Google Scholar 

  25. Rehmsmeier, M., Steffen, P., Hochsmann, M., Giegerich, R.: Fast and effective prediction of microRNA/target duplexes. RNA 10(10), 1507–1517 (2004)

    Article  Google Scholar 

  26. Smith, T., Waterman, M.: Identification of common molecular subsequences. Journal of molecular biology 147(1), 195–197 (1981)

    Article  Google Scholar 

  27. Stark, A., Brennecke, J., Russell, R., Cohen, S.: Identification of Drosophila MicroRNA Targets. PLoS Biol. 1(3), e60 (2003)

    Article  Google Scholar 

  28. Tang, C., Lu, C., Chang, M., Tsai, Y., Sun, Y., Chao, K., Chang, J., Chiou, Y., Wu, C., Chang, H., et al.: Constrained multiple sequence alignment tool development and its application to RNase family alignment. Journal of Bioinformatics and Computational Biology 1(2), 267–288 (2003)

    Article  Google Scholar 

  29. Vella, M., Reinert, K., Slack, F.: Architecture of a validated microRNA: target interaction. Chemistry & Biology 11(12), 1619–1623 (2004)

    Article  Google Scholar 

  30. Wang, X., El Naqa, I.: Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics 24(3), 325 (2008)

    Article  Google Scholar 

  31. Xiao, F., Zuo, Z., Cai, G., Kang, S., Gao, X., Li, T.: miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Research (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Milo, N., Pinhas, T., Ziv-Ukelson, M. (2010). SA-REPC – Sequence Alignment with Regular Expression Path Constraint. In: Dediu, AH., Fernau, H., Martín-Vide, C. (eds) Language and Automata Theory and Applications. LATA 2010. Lecture Notes in Computer Science, vol 6031. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13089-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13089-2_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13088-5

  • Online ISBN: 978-3-642-13089-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics