Learnability of Automatic Classes

  • Sanjay Jain
  • Qinglong Luo
  • Frank Stephan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6031)


The present work initiates the study of the learnability of automatic indexable classes which are classes of regular languages of a certain form. Angluin’s tell-tale condition characterizes when these classes are explanatorily learnable. Therefore, the more interesting question is when learnability holds for learners with complexity bounds, formulated in the automata-theoretic setting. The learners in question work iteratively, in some cases with an additional long-term memory, where the update function of the learner mapping old hypothesis, old memory and current datum to new hypothesis and new memory is automatic. Furthermore, the dependence of the learnability on the indexing is also investigated. This work brings together the fields of inductive inference and automatic structures.


Inductive Inference Regular Language Iterative Learner Positive Data Hypothesis Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D.: Finding patterns common to a set of strings. Journal of Computer and System Sciences 21, 46–62 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Angluin, D.: Inductive inference of formal languages from positive data. Information and Control 45, 117–135 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Angluin, D.: Inference of reversible languages. Journal of the ACM 29, 741–765 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Angluin, D.: Learning regular sets from queries and counter-examples. Information and Computation 75, 87–106 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bārzdiņš, J.: Inductive inference of automata, functions and programs. In: Proceedings of the 20th International Congress of Mathematicians, Vancouver, pp. 455–560 (1974)Google Scholar
  6. 6.
    Bārzdiņš, J.: Two theorems on the limiting synthesis of functions. In: Theory of Algorithms and Programs, vol. 1, pp. 82–88. Latvian State University (1974)Google Scholar
  7. 7.
    Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Information and Control 28, 125–155 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Blumensath, A., Grädel, E.: Automatic structures. In: 15th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 51–62. IEEE Computer Society, Los Alamitos (2000)Google Scholar
  9. 9.
    Fernau, H.: Identification of function distinguishable languages. Theoretical Computer Science 290, 1679–1711 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Freivalds, R., Kinber, E., Smith, C.: On the impact of forgetting on learning machines. Journal of the ACM 42, 1146–1168 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gold, E.M.: Language identification in the limit. Information and Control 10, 447–474 (1967)zbMATHCrossRefGoogle Scholar
  12. 12.
    Head, T., Kobayashi, S., Yokomori, T.: Locality, reversibility, and beyond: Learning languages from positive data. In: Richter, M.M., Smith, C.H., Wiehagen, R., Zeugmann, T. (eds.) ALT 1998. LNCS (LNAI), vol. 1501, pp. 191–204. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Hodgson, B.R.: On direct products of automaton decidable theories. Theoretical Computer Science 19, 331–335 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)Google Scholar
  15. 15.
    Lange, S., Wiehagen, R.: Polynomial time inference of arbitrary pattern languages. New Generation Computing 8, 361–370 (1991)zbMATHCrossRefGoogle Scholar
  16. 16.
    Lange, S., Zeugmann, T.: Language learning in dependence on the space of hypotheses. In: Proceedings of the Sixth Annual Conference on Computational Learning Theory, pp. 127–136. ACM Press, New York (1993)CrossRefGoogle Scholar
  17. 17.
    Osherson, D., Stob, M., Weinstein, S.: Learning strategies. Information and Control 53, 32–51 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Osherson, D., Stob, M., Weinstein, S.: Systems that Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists. MIT Press, Cambridge (1986)Google Scholar
  19. 19.
    Rubin, S.: Automata presenting structures: A survey of the finite string case. The Bulletin of Symbolic Logic 14, 169–209 (2008)zbMATHCrossRefGoogle Scholar
  20. 20.
    Shinohara, T.: Rich classes inferable from positive data: Length–bounded elementary formal systems. Information and Computation 108, 175–186 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Wexler, K., Culicover, P.: Formal Principles of Language Acquisition. MIT Press, Cambridge (1980)Google Scholar
  22. 22.
    Wiehagen, R.: Limes-Erkennung rekursiver Funktionen durch spezielle Strategien. Electronische Informationverarbeitung und Kybernetik 12, 93–99 (1976)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sanjay Jain
    • 1
  • Qinglong Luo
    • 1
  • Frank Stephan
    • 2
  1. 1.Department of Computer ScienceNational University of SingaporeSingaporeRepublic of Singapore
  2. 2.Department of Mathematics and Department of Computer ScienceNational University of SingaporeSingaporeRepublic of Singapore

Personalised recommendations