Skip to main content

Capacitated Confluent Flows: Complexity and Algorithms

  • Conference paper
Book cover Algorithms and Complexity (CIAC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6078))

Included in the following conference series:

Abstract

A flow on a directed network is said to be confluent if the flow uses at most one outgoing arc at each node. Confluent flows arise naturally from destination-based routing. We study the Maximum Confluent Flow Problem (MaxConf) with a single commodity but multiple sources and sinks. Unlike previous results, we consider heterogeneous arc capacities. The supplies and demands of the sources and sinks can also be bounded. We give a pseudo-polynomial time algorithm and an FPTAS for graphs with constant treewidth. Somewhat surprisingly, MaxConf is NP-hard even on trees, so these algorithms are, in a sense, best possible. We also show that it is NP-complete to approximate MaxConf better than 3/2 on general graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian Journal of Mathematics 8, 399–404 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  3. Kleinberg, J.M.: Single-source unsplittable flow. In: 37th Annual Symposium on Foundations of Computer Science, pp. 68–77 (1996)

    Google Scholar 

  4. Bley, A.: Routing and Capacity Optimization for IP Networks. PhD thesis, TU Berlin (2007)

    Google Scholar 

  5. Fügenschuh, A., Homfeld, H., Schuelldorf, H.: Routing cars in rail freight service. Dagstuhl Seminar Proceedings, vol. 09261, Dagstuhl, Germany (2009)

    Google Scholar 

  6. Goyal, N., Olver, N., Shepherd, F.B.: The VPN conjecture is true. In: STOC 2008: Proceedings of the 40th annual ACM symposium on Theory of computing, pp. 443–450. ACM, New York (2008)

    Google Scholar 

  7. Chen, J., Rajaraman, R., Sundaram, R.: Meet and merge: approximation algorithms for confluent flows. J. Comput. Syst. Sci. 72, 468–489 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, J., Kleinberg, R.D., Lovász, L., Rajaraman, R., Sundaram, R., Vetta, A.: (Almost) tight bounds and existence theorems for single-commodity confluent flows. J. ACM 54, 16 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bodlaender, H.: Treewidth: Algorithmic techniques and results. In: Privara, I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 29–36. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  10. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism problem. Theoretical Computer Science 10, 111–121 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  12. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. Journal of Combinatorial Theory, Series B 82, 138–154 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kaibel, V., Peinhardt, M.A.F.: On the bottleneck shortest path problem. Technical Report 06-22, Konrad-Zuse-Zentrum f. Informationstechnik Berlin (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dressler, D., Strehler, M. (2010). Capacitated Confluent Flows: Complexity and Algorithms. In: Calamoneri, T., Diaz, J. (eds) Algorithms and Complexity. CIAC 2010. Lecture Notes in Computer Science, vol 6078. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13073-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13073-1_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13072-4

  • Online ISBN: 978-3-642-13073-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics