Abstract
This paper addresses the issue of a content-based information retrieval system that works on fMRI images from neuroscientific journal publications. We present a general framework for automatic extraction, characterisation and classification of fMRI images, based on their functional properties. The proposed method identifies the section of each of those images, by morphological processing, and estimates the coordinates of the brain activated regions, in relation to a standard reference template using locality preserving projections. Those regions are then segmented, and their physical and geometrical properties evaluated. We formulate a feature vector based on these characteristics, and cluster the images and corresponding journal publications using self organizing maps.
Keywords
- Activation Region
- Feature Vector
- Image Approach
- Volume Type
- Winning Neuron
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Huettel, S.A., Song, A.W., McCarthy, G.: Functional magnetic resonance imaging Sinauer Associates Publishers, Sunderland (2004)
Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. The MIT Press, Cambridge (2001)
Laird, A.R., Lancaster, J.L., Fox, P.T.: Lost in localization? the focus is metaanalysis. NeuroImage 48, 18–20 (2009)
Van Essen, D.C., Dierker, D.L.: Surface-based and probabilistic atlases of primate cerebral cortex. Neuron 56(2), 209–225 (2007)
Laird, A.R., Lancaster, J.L., Fox, P.T.: Brainmap: The social evolution of a human brain mapping database. Neuroinformatics 3(1), 65–78 (2005)
NeuroImage 48 (2009)
Bankman, I.N. (ed.): Handbook of medical imaging. Academic Press, Inc., Orlando (2000)
Friston, K.J.: Statistical Parametric Mapping: The Analysis of Functional Brain Images, December 2006. Academic Press, London (2006)
Brett, M., Johnsrude, I.S., Owen, A.M.: The problem of functional localization in the human brain. Nat. Rev. Neurosci. 3(3), 243–249 (2002)
He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.J.: Face recognition using laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(3), 328–340 (2005)
Laaksonen, J., Koskela, M., Laakso, S., Oja, E.: Picsom—content-based image retrieval with self-organizing maps. Pattern Recogn. Lett. 21(13-14), 1199–1207 (2000)
Kohonen, T.: Self-Organizing Maps, 3rd edn., December 2000. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rajasekharan, J., Scharfenberger, U., Gonçalves, N., Vigário, R. (2010). Image Approach towards Document Mining in Neuroscientific Publications. In: Cohen, P.R., Adams, N.M., Berthold, M.R. (eds) Advances in Intelligent Data Analysis IX. IDA 2010. Lecture Notes in Computer Science, vol 6065. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13062-5_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-13062-5_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13061-8
Online ISBN: 978-3-642-13062-5
eBook Packages: Computer ScienceComputer Science (R0)