Skip to main content

Image Approach towards Document Mining in Neuroscientific Publications

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 6065)

Abstract

This paper addresses the issue of a content-based information retrieval system that works on fMRI images from neuroscientific journal publications. We present a general framework for automatic extraction, characterisation and classification of fMRI images, based on their functional properties. The proposed method identifies the section of each of those images, by morphological processing, and estimates the coordinates of the brain activated regions, in relation to a standard reference template using locality preserving projections. Those regions are then segmented, and their physical and geometrical properties evaluated. We formulate a feature vector based on these characteristics, and cluster the images and corresponding journal publications using self organizing maps.

Keywords

  • Activation Region
  • Feature Vector
  • Image Approach
  • Volume Type
  • Winning Neuron

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-13062-5_15
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-13062-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huettel, S.A., Song, A.W., McCarthy, G.: Functional magnetic resonance imaging Sinauer Associates Publishers, Sunderland (2004)

    Google Scholar 

  2. Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. The MIT Press, Cambridge (2001)

    Google Scholar 

  3. Laird, A.R., Lancaster, J.L., Fox, P.T.: Lost in localization? the focus is metaanalysis. NeuroImage 48, 18–20 (2009)

    CrossRef  Google Scholar 

  4. Van Essen, D.C., Dierker, D.L.: Surface-based and probabilistic atlases of primate cerebral cortex. Neuron 56(2), 209–225 (2007)

    CrossRef  Google Scholar 

  5. Laird, A.R., Lancaster, J.L., Fox, P.T.: Brainmap: The social evolution of a human brain mapping database. Neuroinformatics 3(1), 65–78 (2005)

    CrossRef  Google Scholar 

  6. NeuroImage 48 (2009)

    Google Scholar 

  7. Bankman, I.N. (ed.): Handbook of medical imaging. Academic Press, Inc., Orlando (2000)

    Google Scholar 

  8. Friston, K.J.: Statistical Parametric Mapping: The Analysis of Functional Brain Images, December 2006. Academic Press, London (2006)

    Google Scholar 

  9. Brett, M., Johnsrude, I.S., Owen, A.M.: The problem of functional localization in the human brain. Nat. Rev. Neurosci. 3(3), 243–249 (2002)

    CrossRef  Google Scholar 

  10. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.J.: Face recognition using laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(3), 328–340 (2005)

    CrossRef  Google Scholar 

  11. Laaksonen, J., Koskela, M., Laakso, S., Oja, E.: Picsom—content-based image retrieval with self-organizing maps. Pattern Recogn. Lett. 21(13-14), 1199–1207 (2000)

    CrossRef  MATH  Google Scholar 

  12. Kohonen, T.: Self-Organizing Maps, 3rd edn., December 2000. Springer, Heidelberg (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rajasekharan, J., Scharfenberger, U., Gonçalves, N., Vigário, R. (2010). Image Approach towards Document Mining in Neuroscientific Publications. In: Cohen, P.R., Adams, N.M., Berthold, M.R. (eds) Advances in Intelligent Data Analysis IX. IDA 2010. Lecture Notes in Computer Science, vol 6065. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13062-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13062-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13061-8

  • Online ISBN: 978-3-642-13062-5

  • eBook Packages: Computer ScienceComputer Science (R0)