Skip to main content

Modelling of Heat Flux in Building Using Soft-Computing Techniques

  • Conference paper
Trends in Applied Intelligent Systems (IEA/AIE 2010)

Abstract

Improving the detection of thermal insulation failures in buildings includes the development of models for heating process and fabric gain -heat flux through exterior walls in the building-. Thermal insulation standards are now contractual obligations in new buildings, the energy efficiency in the case of buildings constructed before the regulations adopted is still an open issue, and the assumption is that it will be based on heat flux and conductivity measurement. A three-step procedure is proposed in this study that begins by considering the local building and heating system regulations as well as the specific features of the climate zone. Firstly, the dynamic thermal performance of different variables is specifically modeled. Secondly, an exploratory projection pursuit method called Cooperative Maximum-Likelihood Hebbian Learning is used to extract the relevant features. Finally, a supervised neural model and identification techniques are applied, in order to detect the heat flux through exterior walls in the building. The reliability of the proposed method is validated for a winter zone, associated to several cities in Spain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Villar, J.R., de la Cal, E., Sedano, J.: Minimizing energy consumption in heating systems under uncertainty. In: Corchado, E., Abraham, A., Pedrycz, W. (eds.) HAIS 2008. LNCS (LNAI), vol. 5271, pp. 583–590. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. de la Cal, E., Villar, J.R., Sedano, J.: A thermodynamical model study for an energy saving algorithm. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS (LNAI), vol. 5572, pp. 384–390. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Lewis, P.T., Alexander, P.K.: A flexible model for dynamic building simulation: HTB2. Building and Environment 1, 7–16 (1990)

    Article  Google Scholar 

  4. Freedman, J.H., Tukey, J.W.: Projection pursuit algorithm for exploratory data-analysis. IEEE Transactions on Computers 23(9), 881–890 (1974)

    Article  Google Scholar 

  5. Corchado, E., MacDonald, D., Fyfe, C.: Maximum and minimum likelihood Hebbian Learning for Exploratory Projection Pursuit. Data Mining and Knowledge Discovery 8(3), 203–225 (2004)

    Article  MathSciNet  Google Scholar 

  6. Corchado, E., Fyfe, C.: Connectionist techniques for the identification and suppression of interfering underlying factors. International Journal of Pattern Recognition and Artificial Intelligence 17(8), 1447–1466 (2003)

    Article  Google Scholar 

  7. Corchado, E., Fyfe, C.: Orientation selection using Maximum Likelihood Hebbian learning. International Journal of Knowledge-Based Intelligent Engineering 7(2) (2003)

    Google Scholar 

  8. Directive 2002/91/CE of the European Parliament and the Council of 16 December 2002 on the energy performance of buildings. Official Journal of the European Community (2003)

    Google Scholar 

  9. Real Decreto 314/2006, de 17 de Marzo. BOE núm 74, Reino de España (2006)

    Google Scholar 

  10. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2(6), 559–572 (1901)

    Google Scholar 

  11. Hotelling, H.: Analysis of a complex of statistical variables into principal components. Journal of Education Psychology 24, 417–444 (1933)

    Article  Google Scholar 

  12. Seung, H.S., Socci, N.D., Lee, D.: The rectified Gaussian distribution. Advances in Neural Information Processing Systems 10, 350–356 (1998)

    Google Scholar 

  13. Fyfe, C., Corchado, E.: Maximum likelihood Hebbian rules. In: Proceedings of the 10th European Symposium on Artificial Neural Networks (ESANN 2002), pp. 143–148. D-side Publishers, Bruges (2002)

    Google Scholar 

  14. Corchado, E., Han, Y., Fyfe, C.: Structuring global responses of local filters using lateral connections. Journal of Experimental & Theoretical Artificial Intelligence 15(4), 473–487 (2003)

    Article  MATH  Google Scholar 

  15. Ljung, L.: System Identification. Theory for the User, 2nd edn. Prentice-Hall, Upper Saddle River (1999)

    Google Scholar 

  16. Akaike, H.: Fitting autoregressive models for prediction. Ann. Inst. Stat. Math. 20, 425–439 (1969)

    Article  MathSciNet  Google Scholar 

  17. Bekiros, S.D., Georgoutsos, D.A.: Evaluating direction-of-change forecasting: Neurofuzzy models versus neural networks. Mathematical and Computer Modelling 46, 38–46 (2007)

    Article  Google Scholar 

  18. Nørgaard. M.: Neural network based system identification toolbox. Technical Report 00-E-891, Dept. of Automation, Technical University of Denmark (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sedano, J., Villar, J.R., Curiel, L., de la Cal, E., Corchado, E. (2010). Modelling of Heat Flux in Building Using Soft-Computing Techniques. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds) Trends in Applied Intelligent Systems. IEA/AIE 2010. Lecture Notes in Computer Science(), vol 6098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13033-5_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13033-5_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13032-8

  • Online ISBN: 978-3-642-13033-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics