Skip to main content

Radial Propagation of Waves

  • Chapter
  • First Online:
  • 719 Accesses

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 371))

Abstract

For normal spheroidal displacement fields, a local dispersion equation in the radial coordinate is derived in the Cowling approximation. The conditions are examined under which local propagation of waves in the radial direction is possible. The analysis is divided into two parts: a first part relative to internal gravity waves, which propagate in incompressible layers that are subject to gravity, and a second part relative to acoustic waves, which propagate in compressible layers that are not subject to gravity. In both cases, the layer is considered, first in absence, then in presence of a density stratification. Next, for the two types of waves, the more general case of the radial propagation in a compressible layer with a density stratification that is subject to gravity is considered. A global representation of the radial propagation of acoustic and internal gravity waves throughout a star is given by the propagation diagram.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • J.N. Bahcall, R.K. Ulrich (1988) Solar models, neutrino experiments, and helioseismology. Rev. Mod. Phys. 60, 297–372

    Article  ADS  Google Scholar 

  • J.R. Buchler, P.A. Yecko, Z. Kolláth (1997) The nature of strange modes in classical variable stars. Astron. Astrophys. 326, 669–681

    ADS  Google Scholar 

  • J. Christensen-Dalsgaard, A.J. Cooper, D.O. Gough (1983) An upper bound to the periods of radial pulsation of the Sun. Mon. Not. R. Astron. Soc. 203, 165–179

    ADS  MATH  Google Scholar 

  • J. Christensen-Dalsgaard, C.R. Proffitt, M.J. Thompson (1993) Effects of diffusion on solar models and their oscillation frequencies. Astrophys. J. 403, L75–L78

    Article  ADS  Google Scholar 

  • F.-L. Deubner, D. Gough (1984) Helioseismology: oscillations as a diagnostic of the solar interior. Annu. Rev. Astron. Astrophys. 22, 593–619

    Article  ADS  Google Scholar 

  • C.O. Hines (1960) Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys. 38, 1441–1481

    Article  ADS  Google Scholar 

  • H. Lamb (1908) On the theory of waves propagated vertically in the atmosphere. Proc. Lond. Math. Soc. Ser. 2 7, 122–141

    Google Scholar 

  • P. Ledoux (1962) Sur la forme asymptotique des pulsations radiales adiabatiques d’une étoile. I. Acad. R. Belg. Bull. Cl. Sci. 5e sér. 48, 240–254

    Google Scholar 

  • Y. Osaki (1975) Nonradial oscillations of a 10 solar mass star in the main-sequence stage. Publ. Astron. Soc. Jpn. 27, 237–258

    ADS  Google Scholar 

  • R. Scuflaire (1974) The non radial oscillations of condensed polytropes. Astron. Astrophys. 36, 107–111

    ADS  Google Scholar 

  • P. Smeyers (1984) Theoretical Problems in Stellar Stability and Oscillations, ed. by A. Noels, M. Gabriel. Non-radial oscillations. Proceedings of the 25th Liège International Astrophysical Colloquium, pp. 68–92

    Google Scholar 

  • R.F. Stein, J. Leibacher (1974) Waves in the solar atmosphere. Annu. Rev. Astron. Astrophys. 12, 407–435

    Article  ADS  Google Scholar 

  • G. Sutmann, Z.E. Musielak, P. Ulmschneider (1998) Acoustic wave propagation in the solar atmosphere III. Analytic solutions for adiabatic excitations. Astron. Astrophys. 340, 556–568

    Google Scholar 

  • I. Tolstoy (1963) The theory of waves in stratified fluids including the effects of gravity and rotation. Rev. Mod. Phys. 35, 207–230

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • R.K. Ulrich (1970) The five-minute oscillations on the solar surface. Astrophys. J. 162, 993–1002

    Article  ADS  Google Scholar 

  • W. Unno (1975) On the stability of the solar core. Publ. Astron. Soc. Jpn. 27, 81–99

    ADS  Google Scholar 

  • S.V. Vorontsov, V.N. Zharkov (1989) Helioseismology: theory and interpretation of experimental data. Sov. Sci. Rev. E, Astrophys. Space Phys. Rev. 7, 1–103

    Google Scholar 

  • W.A. Whitaker (1963) Heating of the solar corona by gravity waves. Astrophys. J. 137, 914–930

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Smeyers .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smeyers, P. (2010). Radial Propagation of Waves. In: Linear Isentropic Oscillations of Stars. Astrophysics and Space Science Library, vol 371. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13030-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13030-4_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13029-8

  • Online ISBN: 978-3-642-13030-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics