Skip to main content

Safe Learning with Real-Time Constraints: A Case Study

  • Conference paper
Trends in Applied Intelligent Systems (IEA/AIE 2010)

Abstract

Aim of this work is to study the problem of ensuring safety and effectiveness of a multi-agent robot control system with real-time constraints in the case of learning components usage. Our case study focuses on a robot playing the air hockey game against a human opponent, where the robot has to learn how to minimize opponent’s goals. This case study is paradigmatic since the robot must act in real-time, but, at the same time, it must learn and guarantee that the control system is safe throughout the process. We propose a solution using automata-theoretic formalisms and associated verification tools, showing experimentally that our approach can yield safety without heavily compromising effectiveness.

This research has received funding from the European Community’s Information and Communication Technologies Seventh Framework Programme [FP7/2007-2013] under grant agreement n. [215805], the CHRIS project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kramer, J., Scheutz, M.: Development environments for autonomous mobile robots: A survey. Autonomous Robots 22(2), 101–132 (2007)

    Article  Google Scholar 

  2. Bagnell, J.A., Schaal, S.: Special issue on Machine Learning in Robotics (Editorial). The International Journal of Robotics Research 27(2), 155–156 (2008)

    Article  Google Scholar 

  3. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. Springer, Heidelberg (1999)

    Google Scholar 

  4. Kern, C., Greenstreet, M.R.: Formal verification in hardware design: a survey. ACM Transactions on Design Automation of Electronic Systems (TODAES) 4(2), 123–193 (1999)

    Article  Google Scholar 

  5. Visser, W., Havelund, K., Brat, G., Park, S.J., Lerda, F.: Model checking programs. Automated Software Engineering 10(2), 203–232 (2003)

    Article  Google Scholar 

  6. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Hybrid systems: From verification to falsification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 463–476. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Bentivegna, D.C., Atkeson, C.G., Cheng, G.: Learning tasks from observation and practice. Robotics and Autonomous Systems 47(2-3), 163–169 (2004)

    Article  Google Scholar 

  8. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: An algorithmic approach to the specification and verification of hybrid systems. LNCS, pp. 209–229. Springer, Heidelberg (1993)

    Google Scholar 

  9. Franzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. Journal on Satisfiability, Boolean Modeling and Computation 1, 209–236 (2007)

    Google Scholar 

  10. Metta, G., Fitzpatrick, P., Natale, L.: YARP: yet another robot platform. International Journal on Advanced Robotics Systems 3(1), 43–48 (2006)

    Google Scholar 

  11. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: An update. SIGKDD Explorations 11, 10–18 (2009)

    Article  Google Scholar 

  12. Shevade, S.K., Keerthi, S.S., Bhattacharyya, C., Murthy, K.R.K.: Improvements to the SMO algorithm for SVM regression. IEEE Transactions on Neural Networks 11(5), 1188–1193 (2000)

    Article  Google Scholar 

  13. Smith, D.J., Simpson, K.G.L.: Functional safety: a straightforward guide to applying IEC 61508 and related standards. Butterworth-Heinemann (2004)

    Google Scholar 

  14. Pappas, G., Kress-Gazit, H. (eds.): ICRA Workshop on Formal Methods in Robotics and Automation (2009)

    Google Scholar 

  15. Cervera, E., Garcia-Aracil, N., Martinez, E., Nomdedeu, L., del Pobil, A.P.: Safety for a robot arm moving amidst humans by using panoramic vision. In: IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 2183–2188 (2008)

    Google Scholar 

  16. Gordon, D.F.: Asimovian adaptive agents. Journal of Artificial Intelligence Research 13, 95–153 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Perkins, T.J., Barto, A.G.: Lyapunov design for safe reinforcement learning. The Journal of Machine Learning Research 3, 803–832 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Metta, G., Natale, L., Pathak, S., Pulina, L., Tacchella, A. (2010). Safe Learning with Real-Time Constraints: A Case Study. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds) Trends in Applied Intelligent Systems. IEA/AIE 2010. Lecture Notes in Computer Science(), vol 6096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13022-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13022-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13021-2

  • Online ISBN: 978-3-642-13022-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics