Advertisement

Efficient Set Operations in the Presence of Malicious Adversaries

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6056)

Abstract

We revisit the problem of constructing efficient secure two-party protocols for set-intersection and set-union, focusing on the model of malicious parties. Our main results are constant-round protocols that exhibit linear communication and a linear number of exponentiations with simulation based security. In the heart of these constructions is a technique based on a combination of a perfectly hiding commitment and an oblivious pseudorandom function evaluation protocol. Our protocols readily transform into protocols that are UC-secure.

Keywords

Secure two-party computation Simulation based security Set intersection Set union Oblivious pseudorandom function evaluation 

References

  1. 1.
    Aggarwal, G., Mishra, N., Pinkas, B.: Secure Computation of the kth-Ranked Element. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 40–55. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Aumann, Y., Lindell, Y.: Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 137–156. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced Allocations. SIAM Journal on Computing 29(1), 180–200 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non cryptographic fault tolerant distributed computations. In: 20th STOC, pp. 1–10 (1988)Google Scholar
  5. 5.
    Boneh, D., Goh, E., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: 20th STOC, pp. 11–19 (1988)Google Scholar
  7. 7.
    Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)Google Scholar
  8. 8.
    Damgård, I.: Efficient Concurrent Zero-Knowledge in the Auxiliary String Model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Damgård, I., Jurik, M.: A Generalisation, a Simplification and Some Applications of Paillier’s Probabilistic Public-Key System. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Damgård, I., Nielsen, J.B.: Perfect Hiding and Perfect Binding Universally Composable Commitment Schemes with Constant Expansion Factor. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 3–42. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient Robust Private Set Intersection. In: Ghilardi, S. (ed.) ANCS 2009. LNCS, vol. 5479, pp. 125–142. Springer, Heidelberg (2009)Google Scholar
  12. 12.
    El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1984)CrossRefGoogle Scholar
  13. 13.
    Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M.J., Wright, R.N.: Secure multiparty computation of approximations. ACM Transactions on Algorithms (TALG) 2(3), 435–472 (2006)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Fouque, P., Pointcheval, D.: Threshold cryptosystems secure against chosen-ciphertext attacks. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 573–584. Springer, Heidelberg (2000)Google Scholar
  15. 15.
    Fouque, P., Poupard, G., Stern, J.: Sharing decryption in the context of voting of lotteries. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 90–104. Springer, Heidelberg (2009)Google Scholar
  16. 16.
    Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword Search and Oblivious Pseudorandom Functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Freedman, M., Nissim, K., Pinkas, B.: Efficient Private Matching and Set-Intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)Google Scholar
  18. 18.
    Goldreich, O.: Foundations of Cryptography: Volume 2 – Basic Applications. Cambridge University Press, Cambridge (2004)Google Scholar
  19. 19.
    Goldreich, O., Kahan, A.: How To Construct Constant-Round Zero-Knowledge Proof Systems for NP. Journal of Cryptology 9(3), 167–190 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: 19th STOC, pp. 218–229 (1987)Google Scholar
  21. 21.
    Hazay, C., Lindell, Y.: Efficient Protocols for Set Intersection and Pattern Matching with Security Against Malicious and Covert Adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Hazay, C., Nissim, K.: Efficient Set Operations in the Presence of Malicious Adversaries. Cryptology ePrint Archive, Report 2009/594 (2009), http://eprint.iacr.org/
  23. 23.
    Jarecki, S., Liu, X.: Efficient Oblivious Pseudorandom Function with Applications to Adaptive OT and Secure Computation of Set Intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)Google Scholar
  24. 24.
    Kiltz, E., Mohassel, P., Weinreb, E., Franklin, M.K.: Secure Linear Algebra Using Linearly Recurrent Sequences. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 291–310. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Kissner, L., Song, D.X.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005); See technical report CMU-CS-05-113 for the full versionGoogle Scholar
  26. 26.
    Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. Journal of Cryptology 15(3), 177–206 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Mohassel, P., Weinreb, E.: Efficient Secure Linear Algebra in the Presence of Covert or Computationally Unbounded Adversaries. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 481–496. Springer, Heidelberg (2008)Google Scholar
  28. 28.
    Naor, M., Nissim, K.: Communication preserving protocols for secure function evaluation. In: 33th STOC, pp. 590–599 (2001)Google Scholar
  29. 29.
    Naor, M., Reingold, O.: Number-Theoretic Constructions of Ecient Pseudo-Random Functions. In: 38th FOCS, pp. 231–262 (1997)Google Scholar
  30. 30.
    Nissim, K., Weinreb, E.: Communication Efficient Secure Linear Algebra. In: 4th TCC, pp. 522–541 (2006)Google Scholar
  31. 31.
    Okamoto, T.: Provably Secure and Practical Identification Schemes and Corresponding Signature Schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993)Google Scholar
  32. 32.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  33. 33.
    Pedersen, T.P.: Non-Interactive and Information-Theoretical Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  34. 34.
    Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Composable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)Google Scholar
  35. 35.
    Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)Google Scholar
  36. 36.
    Vocking, B.: How Asymmetry Helps Load Balancing. Journal of the ACM 50(4), 568–589 (2003)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Yao, A.C.: Protocols for secure computations. In: 23rd FOCS, pp. 160–164 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Dept. of Computer Science and Applied MathematicsWeizmann Institute and Interdisciplinary Center (IDC)Herzliya
  2. 2.Dept. of Computer ScienceBen-Gurion University and Microsoft AIIsrael

Personalised recommendations