Advertisement

Efficient Set Operations in the Presence of Malicious Adversaries

  • Carmit Hazay
  • Kobbi Nissim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6056)

Abstract

We revisit the problem of constructing efficient secure two-party protocols for set-intersection and set-union, focusing on the model of malicious parties. Our main results are constant-round protocols that exhibit linear communication and a linear number of exponentiations with simulation based security. In the heart of these constructions is a technique based on a combination of a perfectly hiding commitment and an oblivious pseudorandom function evaluation protocol. Our protocols readily transform into protocols that are UC-secure.

Keywords

Secure two-party computation Simulation based security Set intersection Set union Oblivious pseudorandom function evaluation 

References

  1. 1.
    Aggarwal, G., Mishra, N., Pinkas, B.: Secure Computation of the kth-Ranked Element. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 40–55. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Aumann, Y., Lindell, Y.: Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 137–156. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced Allocations. SIAM Journal on Computing 29(1), 180–200 (1999)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non cryptographic fault tolerant distributed computations. In: 20th STOC, pp. 1–10 (1988)Google Scholar
  5. 5.
    Boneh, D., Goh, E., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: 20th STOC, pp. 11–19 (1988)Google Scholar
  7. 7.
    Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)Google Scholar
  8. 8.
    Damgård, I.: Efficient Concurrent Zero-Knowledge in the Auxiliary String Model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Damgård, I., Jurik, M.: A Generalisation, a Simplification and Some Applications of Paillier’s Probabilistic Public-Key System. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Damgård, I., Nielsen, J.B.: Perfect Hiding and Perfect Binding Universally Composable Commitment Schemes with Constant Expansion Factor. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 3–42. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient Robust Private Set Intersection. In: Ghilardi, S. (ed.) ANCS 2009. LNCS, vol. 5479, pp. 125–142. Springer, Heidelberg (2009)Google Scholar
  12. 12.
    El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1984)CrossRefGoogle Scholar
  13. 13.
    Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M.J., Wright, R.N.: Secure multiparty computation of approximations. ACM Transactions on Algorithms (TALG) 2(3), 435–472 (2006)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Fouque, P., Pointcheval, D.: Threshold cryptosystems secure against chosen-ciphertext attacks. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 573–584. Springer, Heidelberg (2000)Google Scholar
  15. 15.
    Fouque, P., Poupard, G., Stern, J.: Sharing decryption in the context of voting of lotteries. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 90–104. Springer, Heidelberg (2009)Google Scholar
  16. 16.
    Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword Search and Oblivious Pseudorandom Functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Freedman, M., Nissim, K., Pinkas, B.: Efficient Private Matching and Set-Intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)Google Scholar
  18. 18.
    Goldreich, O.: Foundations of Cryptography: Volume 2 – Basic Applications. Cambridge University Press, Cambridge (2004)Google Scholar
  19. 19.
    Goldreich, O., Kahan, A.: How To Construct Constant-Round Zero-Knowledge Proof Systems for NP. Journal of Cryptology 9(3), 167–190 (1996)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: 19th STOC, pp. 218–229 (1987)Google Scholar
  21. 21.
    Hazay, C., Lindell, Y.: Efficient Protocols for Set Intersection and Pattern Matching with Security Against Malicious and Covert Adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Hazay, C., Nissim, K.: Efficient Set Operations in the Presence of Malicious Adversaries. Cryptology ePrint Archive, Report 2009/594 (2009), http://eprint.iacr.org/
  23. 23.
    Jarecki, S., Liu, X.: Efficient Oblivious Pseudorandom Function with Applications to Adaptive OT and Secure Computation of Set Intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)Google Scholar
  24. 24.
    Kiltz, E., Mohassel, P., Weinreb, E., Franklin, M.K.: Secure Linear Algebra Using Linearly Recurrent Sequences. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 291–310. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Kissner, L., Song, D.X.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005); See technical report CMU-CS-05-113 for the full versionGoogle Scholar
  26. 26.
    Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. Journal of Cryptology 15(3), 177–206 (2002)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Mohassel, P., Weinreb, E.: Efficient Secure Linear Algebra in the Presence of Covert or Computationally Unbounded Adversaries. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 481–496. Springer, Heidelberg (2008)Google Scholar
  28. 28.
    Naor, M., Nissim, K.: Communication preserving protocols for secure function evaluation. In: 33th STOC, pp. 590–599 (2001)Google Scholar
  29. 29.
    Naor, M., Reingold, O.: Number-Theoretic Constructions of Ecient Pseudo-Random Functions. In: 38th FOCS, pp. 231–262 (1997)Google Scholar
  30. 30.
    Nissim, K., Weinreb, E.: Communication Efficient Secure Linear Algebra. In: 4th TCC, pp. 522–541 (2006)Google Scholar
  31. 31.
    Okamoto, T.: Provably Secure and Practical Identification Schemes and Corresponding Signature Schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993)Google Scholar
  32. 32.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  33. 33.
    Pedersen, T.P.: Non-Interactive and Information-Theoretical Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  34. 34.
    Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Composable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)Google Scholar
  35. 35.
    Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)Google Scholar
  36. 36.
    Vocking, B.: How Asymmetry Helps Load Balancing. Journal of the ACM 50(4), 568–589 (2003)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Yao, A.C.: Protocols for secure computations. In: 23rd FOCS, pp. 160–164 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Carmit Hazay
    • 1
  • Kobbi Nissim
    • 2
  1. 1.Dept. of Computer Science and Applied MathematicsWeizmann Institute and Interdisciplinary Center (IDC)Herzliya
  2. 2.Dept. of Computer ScienceBen-Gurion University and Microsoft AIIsrael

Personalised recommendations