Advertisement

Chosen-Ciphertext Security from Slightly Lossy Trapdoor Functions

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6056)

Abstract

Lossy Trapdoor Functions (LTDFs), introduced by Peikert and Waters (STOC 2008) have been useful for building many cryptographic primitives. In particular, by using an LTDF that loses a (1 − 1/ω(logn)) fraction of all its input bits, it is possible to achieve CCA security using the LTDF as a black-box. Unfortunately, not all candidate LTDFs achieve such a high level of lossiness. In this paper we drastically lower the lossiness required to achieve CCA security, showing that an LTDF that loses only a noticeable fraction of a single bit can be used in a black-box way to build CCA-secure PKE. To show our result, we build on the recent result of Rosen and Segev (TCC 2009) that showed how to achieve CCA security from functions whose products are one-way on particular types of correlated inputs. Lastly, we give an example construction of a slightly lossy TDF based on the assumption that it is hard to distinguish the product of two primes from the product of three primes.

Keywords

Product Family Maximum Distance Separable Decryption Oracle Trapdoor Function Chosen Ciphertext Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryption and commitment secure under selective opening. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In: STOC, pp. 103–112. ACM, New York (1988)Google Scholar
  3. 3.
    Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic encryption, and efficient constructions without random oracles. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)Google Scholar
  4. 4.
    Cachin, C., Micali, S., Stadler, M.: Computationally Private Information Retrieval with Polylogarithmic Communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. SIAM J. Comput. 38(1), 97–139 (2008); Cachin, C., Camenisch, J.L. (eds.): EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Freeman, D., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: Number-theoretic constructions of lossy and correlation-secure trapdoor functions. In: PKC 2010. Springer, Heidelberg (to appear, 2010)Google Scholar
  7. 7.
    Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing – STOC 1989, pp. 25–32. ACM, New York (1989)CrossRefGoogle Scholar
  8. 8.
    Hofheinz, D., Kiltz, E.: Practical Chosen Ciphertext Secure Encryption from Factoring. In: Joux, A. (ed.) EUROCRYPT 2009, vol. 5479, pp. 313–332. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Kiltz, E., O’Neill, A., Smith, A.: Lossiness of RSA and the Chosen-Ciphertext Security of OAEP without Random Oracles (2009) (manuscript)Google Scholar
  10. 10.
    Macwilliams, F., Sloane, N.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (January 1983)Google Scholar
  11. 11.
    Mol, P., Yilek, S.: Chosen-Ciphertext Security from Slightly Lossy Trapdoor Functions. Cryptology ePrint Archive, Report 2009/524 (2009), http://eprint.iacr.org/
  12. 12.
    Myers, S., Shelat, A.: Bit Encryption Is Complete. In: FOCS, pp. 607–616. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  13. 13.
    Naor, M., Yung, M.: Public-key Cryptosystems Provably Secure against Chosen Ciphertext Attacks. In: STOC, pp. 427–437. ACM, New York (1990)Google Scholar
  14. 14.
    Peikert, C., Waters, B.: Lossy Trapdoor Functions and Their Applications (October 5, 2009), Latest Version availbale at http://www.cc.gatech.edu/~cpeikert/
  15. 15.
    Peikert, C., Waters, B.: Lossy Trapdoor Functions and Their Applications. In: STOC 2008, pp. 187–196. ACM, New York (2008)CrossRefGoogle Scholar
  16. 16.
    Rabin, M.O.: Digitalized Signatures and Public-Key Functions as Intractable as Factorization. Technical report, Massachusetts Institute of Technology (1979)Google Scholar
  17. 17.
    Rackoff, C., Simon, D.R.: Non-interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1991)Google Scholar
  18. 18.
    Reed, I.S., Solomon, G.: Polynomial Codes Over Certain Finite Fields. SIAM J. Comput. 8(2), 300–304 (1960)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Rosen, A., Segev, G.: Chosen-Ciphertext Security via Correlated Products. IACR ePrint Archive, Report 2008/116Google Scholar
  20. 20.
    Rosen, A., Segev, G.: Efficient lossy trapdoor functions based on the composite residuosity assumption. IACR ePrint Archive, Report 2008/134Google Scholar
  21. 21.
    Rosen, A., Segev, G.: Chosen-Ciphertext Security via Correlated Products. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg (2009)Google Scholar
  22. 22.
    Shamir, A.: How to Share a Secret. Commun. ACM 22(11), 612–613 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Singleton, R.C.: Maximum Distance q-nary Codes. IEEE Transactions on Information Theory 10, 116–118 (1964)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Computer Science & EngineeringUniversity of CaliforniaSan Diego

Personalised recommendations