Advertisement

More Constructions of Lossy and Correlation-Secure Trapdoor Functions

  • David Mandell Freeman
  • Oded Goldreich
  • Eike Kiltz
  • Alon Rosen
  • Gil Segev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6056)

Abstract

We propose new and improved instantiations of lossy trapdoor functions (Peikert and Waters, STOC ’08), and correlation-secure trapdoor functions (Rosen and Segev, TCC ’09). Our constructions widen the set of number-theoretic assumptions upon which these primitives can be based, and are summarized as follows:

  • Lossy trapdoor functions based on the quadratic residuosity assumption. Our construction relies on modular squaring, and whereas previous such constructions were based on seemingly stronger assumptions, we present the first construction that is based solely on the quadratic residuosity assumption.

  • Lossy trapdoor functions based on the composite residuosity assumption. Our construction guarantees essentially any required amount of lossiness, where at the same time the functions are more efficient than the matrix-based approach of Peikert and Waters.

  • Lossy trapdoor functions based on the d-Linear assumption. Our construction both simplifies the DDH-based construction of Peikert and Waters, and admits a generalization to the whole family of d-Linear assumptions without any loss of efficiency.

  • Correlation-secure trapdoor functions related to the hardness of syndrome decoding.

Keywords

Public-key encryption lossy trapdoor functions correlation-secure trapdoor functions 

References

  1. 1.
    Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek, S.: Hedged public-key encryption: How to protect against bad randomness. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryption and commitment secure under selective opening. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic encryption, and efficient constructions without random oracles. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)Google Scholar
  4. 4.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008)Google Scholar
  6. 6.
    Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)Google Scholar
  7. 7.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001); Full version (with additional co-author Nielsen, J. B.), available at www.daimi.au.dk/~ivan/GenPaillier_finaljour.ps CrossRefGoogle Scholar
  9. 9.
    Damgård, I., Nielsen, J.B.: Perfect hiding and perfect binding universally composable commitment schemes with constant expansion factor. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Damgård, I., Nielsen, J.B.: Universally composable efficient multiparty computation from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Dowsley, R., Müller-Quade, J., Nascimento, A.C.A.: A CCA2 secure public key encryption scheme based on the McEliece assumptions in the standard model. In: Fischlin, M. (ed.) RSA Conference 2009. LNCS, vol. 5473, pp. 240–251. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Fischer, J.-B., Stern, J.: An efficient pseudo-random generator provably as secure as syndrome decoding. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 245–255. Springer, Heidelberg (1996)Google Scholar
  13. 13.
    Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions of lossy and correlation-secure trapdoor functions. Cryptology ePrint Archive, Report 2009/590 (2009), http://eprint.iacr.org/2009/590
  14. 14.
    Goldwasser, S., Vaikuntanathan, V.: New constructions of correlation-secure trapdoor functions and CCA-secure encryption schemes. Manuscript (2008)Google Scholar
  15. 15.
    Hemenway, B., Ostrovsky, R.: Lossy trapdoor functions from smooth homomorphic hash proof systems. Electronic Colloquium on Computational Complexity, Report TR09-127 (2009)Google Scholar
  16. 16.
    Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Kiltz, E., O’Neill, A., Smith, A.: Lossiness of RSA and the instantiability of OAEP. Manuscript (2009)Google Scholar
  18. 18.
    McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN Prog. Rep., Jet Prop. Lab., 114–116 (January 1978)Google Scholar
  19. 19.
    Mol, P., Yilek, S.: Chosen-ciphertext security from slightly lossy trapdoor functions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 296–311. Springer, Heidelberg (2010), http://eprint.iacr.org/2009/524 CrossRefGoogle Scholar
  20. 20.
    Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009), Full version http://eprint.iacr.org/2009/105. CrossRefGoogle Scholar
  21. 21.
    Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information Theory [Problemy Upravlenija i Teorii Informacii] 15, 159–166 (1986)MATHMathSciNetGoogle Scholar
  22. 22.
    Nishimaki, R., Fujisaki, E., Tanaka, K.: Efficient non-interactive universally composable string-commitment schemes. In: Pieprzyk, J., Zhang, F. (eds.) ProvSec 2009. LNCS, vol. 5848, pp. 3–18. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  24. 24.
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. In: 41st ACM Symposium on Theory of Computing, pp. 333–342 (2009)Google Scholar
  25. 25.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: 40th ACM Symposium on Theory of Computing, pp. 187–196 (2008), Full version http://eprint.iacr.org/2007/279
  26. 26.
    Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. In: Reingold, O. (ed.) Theory of Cryptography. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  27. 27.
    Shacham, H.: A Cramer-Shoup encryption scheme from the Linear assumption and from progressively weaker Linear variants. Cryptology ePrint Archive, Report 2007/074 (2007), http://eprint.iacr.org/2007/074

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • David Mandell Freeman
    • 1
  • Oded Goldreich
    • 2
  • Eike Kiltz
    • 3
  • Alon Rosen
    • 4
  • Gil Segev
    • 2
  1. 1.Stanford UniversityUSA
  2. 2.Weizmann Institute of ScienceRehovotIsrael
  3. 3.CWINetherlands
  4. 4.Efi Arazi School of Computer ScienceHerzliya Interdisciplinary Center (IDC)HerzliyaIsrael

Personalised recommendations