Efficient Arithmetic on Hessian Curves

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6056)


This paper considers a generalized form for Hessian curves. The family of generalized Hessian curves covers more isomorphism classes of elliptic curves. Over a finite field \(\mathbb{F}_q\), it is shown to be equivalent to the family of elliptic curves with a torsion subgroup isomorphic to ℤ/3ℤ.

This paper provides efficient unified addition formulas for generalized Hessian curves. The formulas even feature completeness for suitably chosen parameters.

This paper also presents extremely fast addition formulas for generalized binary Hessian curves. The fastest projective addition formulas require 9M + 3S, where M is the cost of a field multiplication and S is the cost of a field squaring. Moreover, very fast differential addition and doubling formulas are provided that need only 5M + 4S when the curve is chosen with small curve parameters.


Elliptic curves Hessian curves cryptography 


  1. 1.
    Al-Daoud, E., Mahmod, R., Rushdan, M., Kiliçman, A.: A new addition formula for elliptic curves over GF(2n). IEEE Trans. Computers 51(8), 972–975 (2002)CrossRefGoogle Scholar
  2. 2.
    Avanzi, R., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren, F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press, Boca Raton (2005)Google Scholar
  3. 3.
    Avanzi, R.M., Dimitrov, V.S., Doche, C., Sica, F.: Extending scalar multiplication using double bases. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 130–144. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Bernstein, D.J., Lange, T.: Explicit-formulas database,
  5. 5.
    Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Bernstein, D.J., Lange, T., Farashahi, R.R.: Binary Edwards curves. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 244–265. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Bersntein, D.J., Kohel, D., Lange, T.: Twisted Hessian curves,
  8. 8.
    Billet, O., Joye, M.: The Jacobi model of an elliptic curve and side-channel analysis. In: Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.) AAECC 2003. LNCS, vol. 2643, pp. 34–42. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Blake, I.F., Seroussi, G., Smart, N.P.: Advances in Elliptic Curve Cryptography. Cambridge University Press, Cambridge (2005)zbMATHCrossRefGoogle Scholar
  10. 10.
    Brier, É., Déchène, I., Joye, M.: Unified point addition formulæ for elliptic curve cryptosystems. In: Embedded Cryptographic Hardware: Methodologies & Architectures, pp. 247–256. Nova Science Publishers (2004)Google Scholar
  11. 11.
    Brier, É., Joye, M.: Weierstraß elliptic curves and side-channel attacks. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 335–345. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Cassels, J.W.S.: Lectures on Elliptic Curves. Cambridge University Press, Cambridge (1991)zbMATHGoogle Scholar
  13. 13.
    Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers generated by addition in formal groups and new primality and factorization tests. Advances in Applied Mathematics 7(4), 385–434 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Dimitrov, V.S., Imbert, L., Mishra, P.K.: Efficient and secure elliptic curve point multiplication using double-base chains. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Doche, C., Imbert, L.: Extended double-base number system with applications to elliptic curve cryptography. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 335–348. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Farashahi, R.R.: On the number of distinct Legendre, Jacobi and Hessian curves (Preprint)Google Scholar
  17. 17.
    Farashahi, R.R., Shparlinski, I.E.: On the number of distinct elliptic curves in some families. Designs, Codes and Cryptography 54(1), 83–99 (2010)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Gaudry, P., Lubicz, D.: The arithmetic of characteristic 2 Kummer surfaces. Finite Fields and Applications 15, 246–260 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Hesse, O.: Über die Elimination der Variabeln aus drei algebraischen Gleichungen vom zweiten Grade mit zwei Variabeln. Journal für die reine und angewandte Mathematik 10, 68–96 (1844)CrossRefGoogle Scholar
  20. 20.
    Higuchi, A., Takagi, N.: A fast addition algorithm for elliptic curve arithmetic in GF(2n) using projective coordinates. Inf. Process. Lett. 76(3), 101–103 (2000)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Hisil, H., Carter, G., Dawson, E.: New formulæ for efficient elliptic curve arithmetic. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 138–151. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Faster group operations on elliptic curves. In: Brankovic, L., Susilo, W. (eds.) Australasian Information Security Conference (AISC 2009). Conferences in Research and Practice in Information Technology (CRPIT), vol. 98, pp. 7–19 (2009)Google Scholar
  23. 23.
    Joye, M., Quisquater, J.-J.: Hessian elliptic curves and side-channel attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 402–410. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Kim, K.H., Kim, S.I.: A new method for speeding up arithmetic on elliptic curves over binary fields. Cryptology ePrint Archive, Report 2007/181 (2007)Google Scholar
  25. 25.
    Knapp, A.: Elliptic Curves. Princeton University Press, Princeton (1992)zbMATHGoogle Scholar
  26. 26.
    Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177), 203–209 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Liardet, P.-Y., Smart, N.P.: Preventing SPA/DPA in ECC systems using the Jacobi form. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 391–401. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  28. 28.
    López, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2n) without precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 316–327. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  29. 29.
    López, J., Dahab, R.: Improved algorithms for elliptic curve arithmetic in GF(2n). In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 201–212. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  30. 30.
    Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  31. 31.
    Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Mathematics of Computation 48(177), 243–264 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Silverman, J.H.: The Arithmetic of Elliptic Curves. Springer, Heidelberg (1986)zbMATHGoogle Scholar
  33. 33.
    Smart, N.P.: The Hessian form of an elliptic curve. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 118–125. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  34. 34.
    Stam, M.: On Montgomery-like representationsfor elliptic curves over GF(2n). In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 240–253. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  35. 35.
    Washington, L.C.: Elliptic Curves: Number Theory and Cryptography. CRC Press, Boca Raton (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of ComputingMacquarie UniversitySydneyAustralia
  2. 2.Department of Mathematical SciencesIsfahan University of TechnologyIsfahanIran
  3. 3.Technicolor, Security Competence CenterCesson-Sévigné CedexFrance

Personalised recommendations