Advertisement

Preventing Pollution Attacks in Multi-source Network Coding

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6056)

Abstract

Network coding is a method for achieving channel capacity in networks. The key idea is to allow network routers to linearly mix packets as they traverse the network so that recipients receive linear combinations of packets. Network coded systems are vulnerable to pollution attacks where a single malicious node floods the network with bad packets and prevents the receiver from decoding correctly. Cryptographic defenses to these problems are based on homomorphic signatures and MACs. These proposals, however, cannot handle mixing of packets from multiple sources, which is needed to achieve the full benefits of network coding. In this paper we address integrity of multi-source mixing. We propose a security model for this setting and provide a generic construction.

Keywords

Signature Scheme Network Code Vector Space Versus Honest User Pollution Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-based integrity for network coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Agrawal, S., Boneh, D., Boyen, X., Freeman, D.M.: Preventing pollution attacks in multi-source network coding. Cryptology ePrint Archive (2010), Full version of this paper, available at http://eprint.iacr.org
  3. 3.
    Ahlswede, R., Cai, N., Li, S., Yeung, R.: Network information flow. IEEE Transactions on Information Theory 46(4), 1204–1216 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: Signature schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) Public Key Cryptography – PKC 2009. LNCS, vol. 5443, pp. 68–87. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Cai, N., Yeung, R.: Secure network coding. In: Proceedings of the 2002 IEEE International Symposium on Information Theory (2002)Google Scholar
  7. 7.
    Charles, D., Jain, K., Lauter, K.: Signatures for network coding. In: 40th Annual Conference on Information Sciences and Systems, CISS 2006 (2006)Google Scholar
  8. 8.
    Cohen, B.: Incentives build robustness in BitTorrent (2003), http://www.bittorrent.org/bittorrentecon.pdf
  9. 9.
    Feldman, J., Malkin, T., Stein, C., Servedio, R.: On the capacity of secure network coding. In: Proc. 42nd Annual Allerton Conference on Communication, Control, and Computing (2004)Google Scholar
  10. 10.
    Fragouli, C., Le Boudec, J.-Y., Widmer, J.: Network coding: an instant primer. SIGCOMM Comput. Commun. Rev. 36(1), 63–68 (2006)CrossRefGoogle Scholar
  11. 11.
    Fragouli, C., Soljanin, E.: Network Coding Fundamentals. Now Publishers Inc., Hanover (2007)Google Scholar
  12. 12.
    Han, K., Ho, T., Koetter, R., Médard, M., Zhao, F.: On network coding for security. In: Military Communications Conference, Milcom (2007)Google Scholar
  13. 13.
    Ho, T., Leong, B., Koetter, R., Médard, M., Effros, M., Karger, D.: Byzantine modification detection in multicast networks using randomized network coding. In: Proceedings of the 2004 IEEE International Symposium on Information Theory ISIT (June 2004)Google Scholar
  14. 14.
    Jaggi, S., Langberg, M., Katti, S., Ho, T., Katabi, D., Médard, M., Effros, M.: Resilient network coding in the presence of Byzantine adversaries. IEEE Trans. on Information Theory 54(6), 2596–2603 (2008)CrossRefGoogle Scholar
  15. 15.
    Katti, S., Rahul, H., Hu, W., Katabi, D., Médard, M., Crowcroft, J.: XORs in the air: practical wireless network coding. IEEE/ACM Trans. Netw. 16(3), 497–510 (2008)CrossRefGoogle Scholar
  16. 16.
    Koetter, R., Médard, M.: An algebraic approach to network coding. IEEE/ACM Transactions on Networking, 782–795 (2003)Google Scholar
  17. 17.
    Krohn, M., Freedman, M., Mazieres, D.: On the-fly verification of rateless erasure codes for efficient content distribution. In: Proc. of IEEE Symposium on Security and Privacy, pp. 226–240 (2004)Google Scholar
  18. 18.
    Li, Y., Yao, H., Chen, M., Jaggi, S., Rosen, A.: Ripple authentication for network coding. To appear in IEEE INFOCOM (2010), http://home.ie.cuhk.edu.hk/~mhchen/papers/ripple.infocom10.pdf
  19. 19.
    Zhao, F., Kalker, T., Médard, M., Han, K.: Signatures for content distribution with network coding. In: Proc. Intl. Symp. Info. Theory ISIT (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.University of Texas at AustinUSA
  2. 2.Stanford UniversityUSA
  3. 3.Université de LiègeBelgium

Personalised recommendations