Data Assurance in Opaque Computations

  • Joe Hurd
  • Guy Haworth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6048)


The chess endgame is increasingly being seen through the lens of, and therefore effectively defined by, a data ‘model’ of itself. It is vital that such models are clearly faithful to the reality they purport to represent. This paper examines that issue and systems engineering responses to it, using the chess endgame as the exemplar scenario. A structured survey has been carried out of the intrinsic challenges and complexity of creating endgame data by reviewing the past pattern of errors during work in progress, surfacing in publications and occurring after the data was generated. Specific measures are proposed to counter observed classes of error-risk, including a preliminary survey of techniques for using state-of-the-art verification tools to generate EGTs that are correct by construction. The approach may be applied generically beyond the game domain.


High Order Logic Data Assurance Observe Class Interactive Theorem Prover Past Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hooper, D., Whyld, K.: The Oxford Companion to Chess, 2nd edn. OUP (1992)Google Scholar
  2. 2.
    FIDE: The Laws of Chess. FIDE Handbook E.1.01A (2009),
  3. 3.
    McCorduck, P.: Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence. A.K.Peters, Wellesley (2004)Google Scholar
  4. 4.
    Heinz, E.A.: Endgame databases and efficient index schemes. ICCA J. 22(1), 22–32 (1999)MathSciNetGoogle Scholar
  5. 5.
    Ströhlein, T.: Untersuchungen über kombinatorische Spiele. Ph.D. thesis, Technical University of Munich (1970)Google Scholar
  6. 6.
    Haworth, G.McC.: 6-man Chess Solved. ICGA J. 28(3), 153 (2005)Google Scholar
  7. 7.
    Kryukov, K.: EGTs Online (2007),
  8. 8.
    Nalimov, E.V., Haworth, G.McC., Heinz, E.A.: Space-efficient indexing of chess endgame tables. ICGA J. 23(3), 148–162 (2000)Google Scholar
  9. 9.
    Nalimov, E.V.: Private Communications (2000)Google Scholar
  10. 10.
    Coe, T.: Inside the Pentium FDIV bug. Dr. Dobb’s Journal 229, 129–135, 148 (1995)Google Scholar
  11. 11.
    Gorenstein, D., Lyons, R., Solomon, R.: The Classification of Finite Simple Groups. AMS (1994)Google Scholar
  12. 12.
    Devlin, K.: Last doubts removed about the proof of the Four Color Theorem (2005),
  13. 13.
    RIPE: Mediterranean Cable Cut – A RIPE NCC Analysis (2008),
  14. 14.
    BBC: Repairs begin on undersea cable (2008),
  15. 15.
    Pouzzner, D.: Partial failure of Internet root nameservers. The Risks Digest, 19–25 (1997)Google Scholar
  16. 16.
    BBC: Human error’ hits Google search (2009),
  17. 17.
    Hurd, J.: Formal verification of chess endgame databases. In: Hurd, J., Smith, E., Darbari, A. (eds.) Theorem proving in higher order logics: Emerging trends proceedings. Technical Report PRG-RR-05-02, 85-100. Oxford University Computing Laboratory (2005)Google Scholar
  18. 18.
    Shadbolt, N., Hall, W., Berners-Lee, T.: The Semantic Web Revisited. IEEE Intelligent Systems 21(3), 96–101 (2006)CrossRefGoogle Scholar
  19. 19.
    Herik, H.J., van den Herschberg, I.S., Nakad, N.: A Six-Men-Endgame Database: KRP(a2)KbBP(a3). ICCA J. 10(4), 163–180 (1987)Google Scholar
  20. 20.
    Michalski, R.S., Negri, P.G.: An Experiment on Inductive Learning in Chess End Games. In: Machine Intelligence, vol. 8, pp. 175–192. Ellis Horwood (1977)Google Scholar
  21. 21.
    Sattler, R.: Further to the KRP(a2)KbBP(a3) Database. ICCA J. 11(2/3), 82–87 (1988)Google Scholar
  22. 22.
    Herik, H.J., van den Herschberg, I.S., Nakad, N.: A Reply to R. Sattler’s Remarks on the KRP(a2)-KbBP(a3) Database. ICCA J. 11(2/3), 88–91 (1988)Google Scholar
  23. 23.
    Bleicher, E.: Freezer (2009),
  24. 24.
  25. 25.
    Wu, R., Beal, D.F.: Solving Chinese Chess Endgames by Database Construction. Information Sciences 135(3/4), 207–228 (2001)zbMATHCrossRefGoogle Scholar
  26. 26.
    Wirth, C., Nievergelt, J.: Exhaustive and Heuristic Retrograde Analysis of the KPPKP Endgame. ICCA J. 22(2), 67–80 (1999)Google Scholar
  27. 27.
    Tay, A.: A Guide to Endgame Tablebases (2009),
  28. 28.
    Merlino, J.: Regarding FEG 3.03b – List Found (2002),
  29. 29.
    Chessbase: FRITZ ENDGAME T3 (2006),
  30. 30.
    Roycroft, A.J.: *C* Correction. EG 7(119), 771 (1996)Google Scholar
  31. 31.
    Roycroft, A.J.: The Computer Section: Correction. EG 8(123), 47–48 (1997)Google Scholar
  32. 32.
    Roycroft, A.J.: *C*. EG 8(Suppl. 130), 428 (1998)Google Scholar
  33. 33.
    Roycroft, A.J.: Snippets. EG 8(131), 476 (1999)Google Scholar
  34. 34.
    Jones, N.D., Muchnick, S.S. (eds.): TEMPO. LNCS, vol. 66. Springer, Heidelberg (1978)zbMATHGoogle Scholar
  35. 35.
    Bourzutschky, M.S., Tamplin, J.A., Haworth, G.McC.: Chess endgames: 6-man data and strategy. Theoretical Computer Science 349(2), 140–157 (2005)Google Scholar
  36. 36.
    Bourzutschky, M.S.: Tablebase version comparison, (2006-08-10)
  37. 37.
    Thompson, K.: Reflections on Trusting Trust. CACM 27(8), 761–763 (1984)Google Scholar
  38. 38.
    Tamplin, J.: EGT-query service extending to 6-man pawnless endgame EGTs in DTC, DTM, DTZ and DTZ50 metrics (2006),
  39. 39.
    Schaeffer, J., Björnsson, Y., Burch, N., Lake, R., Lu, P., Sutphen, S.: Building the Checkers 10-piece Endgame Databases. In: Advances in Computer Games, vol. 10, pp. 193–210 (2003)Google Scholar
  40. 40.
    Thompson, K.: Retrograde Analysis of Certain Endgames. ICCA J. 9(3), 131–139 (1986)Google Scholar
  41. 41.
    Stiller, L.B.: Parallel Analysis of Certain Endgames. ICCA J. 12(2), 55–64 (1989)Google Scholar
  42. 42.
    Nunn, J.: Secrets of Pawnless Endings, 2nd Expanded edn., Gambit (2002)Google Scholar
  43. 43.
    Krabbé, T.: Private Communication (2008-09-05) Google Scholar
  44. 44.
    Herbstman, A.O.: Draw Study 172. EG 5, 195 (1967)Google Scholar
  45. 45.
    Haworth, G.McC.: Strategies for Constrained Optimisation. ICGA J. 23(1), 9–20 (2000)Google Scholar
  46. 46.
    Byers, F.R.: Care and Handling of CDs and DVDs: A Guide for Librarians and Archivists. CLIR/NIST (2003),
  47. 47.
    Fierz, M., Cash, M., Gilbert, E.: The 2002 World Computer-Checkers Championship. ICGA J. 25(3), 196–198 (2002)Google Scholar
  48. 48.
    Schaeffer, J.: One Jump Ahead: Challenging Human Supremacy in Checkers. Springer, New York (1997)Google Scholar
  49. 49.
    Komissarchik, E.A., Futer, A.L.: Ob Analize Ferzevogo Endshpilia pri Pomoshchi EVM. Problemy Kybernet 29, 211–220 (1974); Reissued in translation by Chr. Posthoff and I.S. Herschberg under the title ‘Computer Analysis of a Queen Endgame. ICCA J. 9(4), 189–198 (1986)Google Scholar
  50. 50.
    Gordon, M.J.C., Melham, T.F.: Introduction to HOL: A theorem-proving environment for higher order logic. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  51. 51.
    Turing, A.M.: Checking a large routine. In: Report of a Conference on High Speed Automatic Calculating Machines, pp. 67–69. Cambridge University Mathematical Laboratory (1949)Google Scholar
  52. 52.
    Leroy, X.: Formal certification of a compiler back-end or: programming a compiler with a proof assistant. In: Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2006), pp. 42–54. ACM, New York (2006)Google Scholar
  53. 53.
    Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Computing Surveys 24(3), 293–318 (1992)CrossRefGoogle Scholar
  54. 54.
    Gordon, M.J.C.: Programming combinations of deduction and BDD-based symbolic calculation. LMS J. of Computation and Mathematics 5, 56–76 (2002)zbMATHGoogle Scholar
  55. 55.
    Edelkamp, S.: Symbolic exploration in two-player games: Preliminary results. In: The International Conference on AI Planning & Scheduling (AIPS), Workshop on Model Checking, Toulouse, France, pp. 40–48 (2002)Google Scholar
  56. 56.
    Kristensen, J.T.: Generation and compression of endgame tables in chess with fast random access using OBDDs. Master’s thesis, U. of Aarhus, Dept. of Computer Science (2005)Google Scholar
  57. 57.
    Hurd, J.: Chess Endgames (2005),
  58. 58.
    Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake, R., Lu, P., Sutphen, S.: Checkers is Solved. Science 317(5844), 1518–1522 (2007)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Joe Hurd
    • 1
  • Guy Haworth
    • 2
  1. 1.Galois, Inc.PortlandUSA
  2. 2.School of Systems EngineeringUniversity of ReadingUK

Personalised recommendations