Performance and Prediction: Bayesian Modelling of Fallible Choice in Chess

  • Guy Haworth
  • Ken Regan
  • Giuseppe Di Fatta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6048)


Evaluating agents in decision-making applications requires assessing their skill and predicting their behaviour. Both are well developed in Poker-like situations, but less so in more complex game and model domains. This paper addresses both tasks by using Bayesian inference in a benchmark space of reference agents. The concepts are explained and demonstrated using the game of chess but the model applies generically to any domain with quantifiable options and fallible choice. Demonstration applications address questions frequently asked by the chess community regarding the stability of the rating scale, the comparison of players of different eras and/or leagues, and controversial incidents possibly involving fraud. The last include alleged under-performance, fabrication of tournament results, and clandestine use of computer advice during competition. Beyond the model world of games, the aim is to improve fallible human performance in complex, high-value tasks.


Bayesian Inference Bayesian Modelling Computer Advice World Championship Search Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Elo, A.: The Rating of Chessplayers, Past and Present. Arco (1978)Google Scholar
  2. 2.
    Haworth, G.McC.: Reference Fallible Endgame Play. ICGA J. 26(2), 81–91 (2003)Google Scholar
  3. 3.
    Haworth, G.McC.: Chess Endgame News. ICGA J. 28(4), 243 (2005) Google Scholar
  4. 4.
    Haworth, G.McC.: Gentlemen, Stop Your Engines! ICGA J. 30(3), 150–156 (2007) Google Scholar
  5. 5.
    Di Fatta, G., Haworth, G.McC., Regan, K.: Skill Rating by Bayesian Inference. In: Proc. IEEE (CIDM) Symposium on Computational Intelligence and Data Mining, pp. 89–94 (2009)Google Scholar
  6. 6.
    Nalimov, E.V., Haworth, G.McC., Heinz, E.A.: Space-Efficient Indexing of Endgame Databases for Chess. In: van den Herik, H.J., Monien, B. (eds.) Advances in Computer Games, IKAT, Maastricht, The Netherlands, vol. 9, pp. 93–113 (2001)Google Scholar
  7. 7.
    Jansen, P.J.: KQKR: Awareness of a Fallible Opponent. ICCA J. 15(3), 111–131 (1992)Google Scholar
  8. 8.
    Donkers, H.H.L.M.: Nosce Hostem: Searching with Opponent Models. Ph.D. dissertation, Univ. of Maastricht (2003)Google Scholar
  9. 9.
    ‘Euclid’:26 Analysis of the Chess Ending King and Queen against King and Rook. In: Freeborough, E. (ed.), Kegan Paul, Trench. Trubner & Co. (1895)Google Scholar
  10. 10.
    Nunn, J.: Secrets of Pawnless Endings, 2nd revised edn., pp. 49–69 (2002)Google Scholar
  11. 11.
    Conway, E.J.: Browne’s Triumph. Chess Voice 12(2), 10 (1979)MathSciNetGoogle Scholar
  12. 12.
    Larkins, J.: Queen vs Rook: A Point for Our Side. Chess Voice 12(2), 11 (1979)Google Scholar
  13. 13.
    Stenberg, W.: Beer in the Ear. Chess Voice 12(2), 8–10 (1979)Google Scholar
  14. 14.
    Kopec, D.: Man-Machine Chess: Past, Present and Future. In: Belzer, J., Kent, A., Holzman, A.G., Williams, J.G. (eds.) Encyclopedia of Computer Science and Technology, vol. 26, pp. 230–270, 241–243,
  15. 15.
    Regan, K.W.: Measuring Fidelity to a Computer Agent (2007),
  16. 16.
    Guid, M., Bratko, I.: Computer Analysis of World Chess Champions. ICGA J. 29(2), 65–73 (2006)Google Scholar
  17. 17.
  18. 18.
    Meyer-Kahlen, S.: The SHREDDER chess engine (2007),
  19. 19.
    Friedel, F.: Cheating in Chess. In: Advances in Computer Games, Institute for Knowledge and Agent Technology (IKAT), Maastricht, The Netherlands, vol. 9, pp. 327–346 (2001)Google Scholar
  20. 20.
    Huber, R., Meyer-Kahlen, S.: The UCI Protocol (2000),
  21. 21.
    Guid, M., Pérez, A., Bratko, I.: How Trustworthy is Crafty’s Analysis of Chess Champions? ICGA J. 31(3), 131–144 (2008)Google Scholar
  22. 22.
    Glickman, M.E.: Parameter estimation in large dynamic paired comparison experiments. J. Royal Stats. Soc., Series C (Applied Statistics) 48(3), 377–394 (1999)zbMATHCrossRefGoogle Scholar
  23. 23.
    Chessbase News: D.P.Singh: Supreme Talent or Flawed Genius? (2007-01-07) Google Scholar
  24. 24.
    Chessbase News: D.P.Singh has survived his ‘Agni Pariksha’ (2007-03-01) Google Scholar
  25. 25.
    Greengard, M.: Cheating Hearts Redux. The Daily Dirt Chess Blog (2006-07-07)Google Scholar
  26. 26.
    TWIC: Tadeusz Gniota Memorial Tournament Report. This Week in Chess (2007-07-20)Google Scholar
  27. 27.
    Regan, K.W.: Player-engine choice-matching data (2009),
  28. 28.
    Berger, J.N.: Theorie und Praxis der Endspiele, p.175 (Revised 1922) (1890)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Guy Haworth
    • 1
  • Ken Regan
    • 2
  • Giuseppe Di Fatta
    • 1
  1. 1.School of Systems Eng.Univ. of ReadingUK
  2. 2.Dept. of CS and Eng.Univ. at Buffalo, State Univ. of New YorkBuffalo

Personalised recommendations